Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Economía e Empresa
  • Investigación (FEE)
  • Ver ítem
  •   RUC
  • Facultade de Economía e Empresa
  • Investigación (FEE)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Evolutionary feature selection approaches for insolvency business prediction with genetic programming

Thumbnail
Ver/abrir
Beade_Angel_2023_Evolutionary_feature_selection_approaches_for_inso.pdf (1.345Mb)
Use este enlace para citar
http://hdl.handle.net/2183/36888
Atribución 4.0 Internacional
A non ser que se indique outra cousa, a licenza do ítem descríbese como Atribución 4.0 Internacional
Coleccións
  • Investigación (FEE) [923]
Metadatos
Mostrar o rexistro completo do ítem
Título
Evolutionary feature selection approaches for insolvency business prediction with genetic programming
Autor(es)
Beade, Angel
Rodríguez López, Manuel
Santos Reyes, José
Data
2023
Cita bibliográfica
Beade, A., Rodríguez López, M. & Santos Reyes, J. (2023). Evolutionary feature selection approaches for insolvency business prediction with genetic programming. Natural computing, 22, 705-722. 10.1007/S11047-023-09951-4
Resumo
[Abstract]: This study uses different feature selection methods in the field of business failure prediction and tests the capability of Genetic Programming (GP) as an appropriate classifier in this field. The prediction models categorize the insolvency/noninsolvency of a firm one year in advance from a large set of financial ratios. Different selection strategies based on two evolutionary algorithms were used to reduce the dimensionality of the financial features considered. The first method considers the combination between the global search provided by an evolutionary algorithm (differential evolution) with a simple classifier, together with the possible use of classical filters in a first step of feature selection. Secondly, genetic programming is used as a feature selector. In addition, these selection approaches will be compared when GP is used exclusively as a classifier. The results show that, when using GP as a classifier method, the proposed selection method with GP stands out from the rest. Moreover, the use of GP as a classifier improves the results with respect to other classifier methods. This shows an added value to the use of GP in this field, in addition to the interpretability of GP prediction models.
Palabras chave
Differential evolution
Genetic programming
Feature selection
Prediction of business insolvency
 
Versión do editor
10.1007/S11047-023-09951-4
Dereitos
Atribución 4.0 Internacional
ISSN
1567-7818

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións