Show simple item record

dc.contributor.authorMoura, Joaquim de
dc.contributor.authorNovo Buján, Jorge
dc.contributor.authorOrtega Hortas, Marcos
dc.contributor.authorCharlón, Pablo
dc.date.accessioned2024-06-06T08:58:16Z
dc.date.available2024-06-06T08:58:16Z
dc.date.issued2016-07-01
dc.identifier.citationMoura, J. de, Novo, J., Ortega, M., Charlón, P. (2016). 3D Retinal Vessel Tree Segmentation and Reconstruction with OCT Images. In: Campilho, A., Karray, F. (eds) Image Analysis and Recognition. ICIAR 2016. Lecture Notes in Computer Science(), vol 9730. Springer, Cham. https://doi.org/10.1007/978-3-319-41501-7_80es_ES
dc.identifier.isbn978-3-319-41500-0
dc.identifier.isbn978-3-319-41501-7
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.urihttp://hdl.handle.net/2183/36817
dc.descriptionThe conference was held in Póvoa de Varzim, Portugales_ES
dc.description.abstract[Absctract]: Detection and analysis of the arterio-venular tree of the retina is a relevant issue, providing useful information in procedures such as the diagnosis of different pathologies. Classical approaches for vessel extraction make use of 2D acquisition paradigms and, therefore, obtain a limited representation of the vascular structure. This paper proposes a new methodology for the automatic 3D segmentation and reconstruction of the retinal arterio-venular tree in Optical Coherence Tomography (OCT) images. The methodology takes advantage of different image analysis techniques to initially segment the vessel tree and estimate its calibers along it. Then, the corresponding depth for the entire vessel tree is obtained. Finally, with all this information, the method performs the 3D reconstruction of the entire vessel tree. The test and validation procedure employed 196 OCT histological images with the corresponding near infrared reflectance retinographies. The methodology showed promising results, demonstrating its accuracy in a complex domain, providing a coherent 3D vessel tree reconstruction that can be posteriorly analyzed in different medical diagnostic processes.es_ES
dc.description.sponsorshipThis work is supported by the Instituto de Salud Carlos III of the Spanish Government and FEDER funds of the European Union through thePI14/02161 and theDTS15/00153 research projects.es_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.relationinfo:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/PI14%2F02161/ES/DESARROLLO DE UN SISTEMA AUTOMÁTICO PARA EL CÁLCULO Y VISUALIZACIÓN DE PROPIEDADES ANATÓMICAS DE LA RETINA EN SD-OCT Y SU CORRELACIÓN CON ANÁLISIS FUNCIONALES HETEROGÉNEOS DE LA VISIÓNes_ES
dc.relationinfo:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DTS15%2F00153/ES/SIRIUS - SISTEMA DE ANÁLISIS DE MICROCIRCULACIÓN RETINIANA: EVALUACIÓN MULTIDISCIPLINAR E INTEGRACIÓN EN PROTOCOLOS CLÍNICOSes_ES
dc.relation.urihttps://doi.org/10.1007/978-3-319-41501-7_80es_ES
dc.rights© 2016 Springer Naturees_ES
dc.subjectComputer-aided diagnosises_ES
dc.subjectRetinal imaginges_ES
dc.subjectOCTes_ES
dc.subjectVessel treees_ES
dc.subject3D segmentationes_ES
dc.title3D Retinal Vessel Tree Segmentation and Reconstruction with OCT Imageses_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.rights.accessinfo:eu-repo/semantics/openAccesses_ES
UDC.journalTitleImage Analysis and Recognition: 13th International Conference, ICIAR 2016, in Memory of Mohamed Kamel, Póvoa de Varzim, Portugal, July 13-15, 2016, Proceedings (Lecture Notes in Computer Science)es_ES
UDC.volume9730es_ES
UDC.startPage716es_ES
UDC.endPage726es_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record