An approach to support generic topologies in distributed PSO algorithms in Spark

Use este enlace para citar
http://hdl.handle.net/2183/36703
A non ser que se indique outra cousa, a licenza do ítem descríbese como Atribución-NoComercial-CompartirIgual 3.0 España
Coleccións
- Investigación (FIC) [1636]
Metadatos
Mostrar o rexistro completo do ítemTítulo
An approach to support generic topologies in distributed PSO algorithms in SparkData
2023Cita bibliográfica
Pardo, X. C., González, P., Banga, J. R., & Doallo, R. (2023). An approach to support generic topologies in distributed PSO algorithms in Spark. In XI Jornadas de Cloud Computing, Big Data & Emerging Topics (La Plata, 27 al 29 de junio de 2023).
Resumo
[Abstract] Particle Swarm Optimization (PSO) is a popular population-based search algorithm that has been applied to all kinds of complex optimization problems. Although the performance of the algorithm strongly depends on the social topology that determines the interaction between the particles during the search, current Metaheuristic Optimization Frameworks (MOFs) provide limited support for topologies. In this paper, we present an approach to support generic topologies in distributed PSO algorithms within a framework for the development and execution of population- based metaheuristics in Spark, which is currently under development.
Palabras chave
Particle swarm optimization
Metaheuristic optimization framework
Social topology
Metaheuristic optimization framework
Social topology
Versión do editor
Dereitos
Atribución-NoComercial-CompartirIgual 3.0 España
ISBN
978-950-34-2271-7