An approach to support generic topologies in distributed PSO algorithms in Spark
Use este enlace para citar
http://hdl.handle.net/2183/36703
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-CompartirIgual 3.0 España
Colecciones
- Investigación (FIC) [1605]
Metadatos
Mostrar el registro completo del ítemTítulo
An approach to support generic topologies in distributed PSO algorithms in SparkFecha
2023Cita bibliográfica
Pardo, X. C., González, P., Banga, J. R., & Doallo, R. (2023). An approach to support generic topologies in distributed PSO algorithms in Spark. In XI Jornadas de Cloud Computing, Big Data & Emerging Topics (La Plata, 27 al 29 de junio de 2023).
Resumen
[Abstract] Particle Swarm Optimization (PSO) is a popular population-based search algorithm that has been applied to all kinds of complex optimization problems. Although the performance of the algorithm strongly depends on the social topology that determines the interaction between the particles during the search, current Metaheuristic Optimization Frameworks (MOFs) provide limited support for topologies. In this paper, we present an approach to support generic topologies in distributed PSO algorithms within a framework for the development and execution of population- based metaheuristics in Spark, which is currently under development.
Palabras clave
Particle Swarm Optimization
Metaheuristic Optimization Frameworks
Social topology
Metaheuristic Optimization Frameworks
Social topology
Versión del editor
Derechos
Atribución-NoComercial-CompartirIgual 3.0 España
ISBN
978-950-34-2271-7