Mostrar o rexistro simple do ítem
Deep learning for segmentation of optic disc and retinal layers in peripapillary optical coherence tomography images
dc.contributor.author | Rivas Vázquez, Estefanía | |
dc.contributor.author | Barreira, Noelia | |
dc.contributor.author | López-Varela, Emilio | |
dc.contributor.author | Penedo, Manuel | |
dc.date.accessioned | 2024-05-22T15:00:33Z | |
dc.date.available | 2024-05-22T15:00:33Z | |
dc.date.issued | 2023-06 | |
dc.identifier.citation | Estefanía Rivas Vázquez, María Noelia Barreira Rodríguez, Emilio López-Varela, Manuel G. Penedo, "Deep learning for segmentation of optic disc and retinal layers in peripapillary optical coherence tomography images," Proc. SPIE 12701, Fifteenth International Conference on Machine Vision (ICMV 2022), 127011A (7 June 2023); https://doi.org/10.1117/12.2680545 | es_ES |
dc.identifier.uri | http://hdl.handle.net/2183/36579 | |
dc.description | This version of the conference paper has been accepted for publication, after peer review in Proceedings SPIE 12701, Fifteenth International Conference on Machine Vision (ICMV 2022), 127011A, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1117/12.2680545. | es_ES |
dc.description.abstract | [Abstract]: Optical coherence tomography (OCT) is a non-invasive technique that allows the retina to be studied with precision, the analysis of the features of its layers and other structures such as the macula or the optic nerve. This is why it is used in the diagnosis and monitoring of eye diseases such as glaucoma and optic neuritis. A crucial step in this process is the segmentation of the different layers, which is a great challenge due to its complexity. In this work, a methodology based on deep learning and transfer learning will be developed to automatically segment nine retinal layers in OCT images centred on the optic disc. In addition, the thickness of each retinal layer will be measured along each B-scan. For this purpose, OCT images from a public dataset and a dataset collected from depth-enhanced images will be used. The proposed method achieves a Dice score of 83.6%, similar to that obtained in the state of the art, segmenting the nine retinal layers and the optic disc in both sets of images. In addition, the different layers are represented in three different graphical formats. | es_ES |
dc.description.sponsorship | This research was funded by Instituto de Salud Carlos III, Government of Spain, DTS18/00136 research project; Ministerio de Ciencia e Innovación y Universidades, Government of Spain, RTI2018-095894-B-I00 research project; Ministerio de Ciencia e Innovación, Government of Spain through the research project with reference PID2019-108435RB-I00; Consellería de Cultura, Educación e Universidade, Xunta de Galicia, Grupos de Referencia Competitiva, grant ref. ED431C 2020/24; Axencia Galega de Innovación (GAIN), Xunta de Galicia, grant ref. IN845D 2020/38; CITIC, Centro de Investigación de Galicia ref. ED431G 2019/01, receives financial support from Consellería de Educación, Universidade e Formación Profesional, Xunta de Galicia, through the ERDF (80%) and Secretaría Xeral de Universidades (20%). | es_ES |
dc.description.sponsorship | Xunta de Galicia; ED431C 2020/24 | es_ES |
dc.description.sponsorship | Xunta de Galicia; IN845D 2020/38 | es_ES |
dc.description.sponsorship | Xunta de Galicia; ED431G 2019/01 | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Society of Photo-Optical Instrumentation Engineers (SPIE) | es_ES |
dc.relation.uri | https://doi.org/10.1117/12.2680545 | es_ES |
dc.rights | © (2023) Society of Photo-Optical Instrumentation Engineers (SPIE). | es_ES |
dc.rights | Todos os dereitos reservados. All rights reserved. | es_ES |
dc.subject | Peripapillary OCT | es_ES |
dc.subject | Layer segmentation | es_ES |
dc.subject | Thickness measurement | es_ES |
dc.title | Deep learning for segmentation of optic disc and retinal layers in peripapillary optical coherence tomography images | es_ES |
dc.type | conference output | es_ES |
dc.rights.accessRights | open access | es_ES |
UDC.volume | 12701 | es_ES |
UDC.issue | 127011A | es_ES |
dc.identifier.doi | 10.1117/12.2680545 | |
UDC.conferenceTitle | Fifteenth International Conference on Machine Vision (ICMV 2022) | es_ES |
UDC.coleccion | Investigación | es_ES |
UDC.departamento | Ciencias da Computación e Tecnoloxías da Información | es_ES |
UDC.grupoInv | Grupo de Visión Artificial e Recoñecemento de Patróns (VARPA) | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-108435RB-I00/ES/CUANTIFICACION Y CARACTERIZACION COMPUTACIONAL DE IMAGEN MULTIMODAL OFTALMOLOGICA: ESTUDIOS EN ESCLEROSIS MULTIPLE | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/DTS18%2F00136/ES/Plataforma online para prevención y detección precoz de enfermedad vascular mediante análisis automatizado de información e imagen clínica | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095894-B-I00/ES/DESARROLLO DE TECNOLOGIAS INTELIGENTES PARA DIAGNOSTICO DE LA DMAE BASADAS EN EL ANALISIS AUTOMATICO DE NUEVAS MODALIDADES HETEROGENEAS DE ADQUISICION DE IMAGEN OFTALMOLOGICA | es_ES |
Ficheiros no ítem
Este ítem aparece na(s) seguinte(s) colección(s)
-
Investigación (FIC) [1701]