Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep learning for segmentation of optic disc and retinal layers in peripapillary optical coherence tomography images

Thumbnail
Ver/Abrir
Rivas_Vazquez_Estefania_2022_Deep_learning_for_segmentation_of_optic_disc_and_retinal_layers.pdf (11.68Mb)
Use este enlace para citar
http://hdl.handle.net/2183/36579
Colecciones
  • Investigación (FIC) [1701]
Metadatos
Mostrar el registro completo del ítem
Título
Deep learning for segmentation of optic disc and retinal layers in peripapillary optical coherence tomography images
Autor(es)
Rivas Vázquez, Estefanía
Barreira, Noelia
López-Varela, Emilio
Penedo, Manuel
Fecha
2023-06
Cita bibliográfica
Estefanía Rivas Vázquez, María Noelia Barreira Rodríguez, Emilio López-Varela, Manuel G. Penedo, "Deep learning for segmentation of optic disc and retinal layers in peripapillary optical coherence tomography images," Proc. SPIE 12701, Fifteenth International Conference on Machine Vision (ICMV 2022), 127011A (7 June 2023); https://doi.org/10.1117/12.2680545
Resumen
[Abstract]: Optical coherence tomography (OCT) is a non-invasive technique that allows the retina to be studied with precision, the analysis of the features of its layers and other structures such as the macula or the optic nerve. This is why it is used in the diagnosis and monitoring of eye diseases such as glaucoma and optic neuritis. A crucial step in this process is the segmentation of the different layers, which is a great challenge due to its complexity. In this work, a methodology based on deep learning and transfer learning will be developed to automatically segment nine retinal layers in OCT images centred on the optic disc. In addition, the thickness of each retinal layer will be measured along each B-scan. For this purpose, OCT images from a public dataset and a dataset collected from depth-enhanced images will be used. The proposed method achieves a Dice score of 83.6%, similar to that obtained in the state of the art, segmenting the nine retinal layers and the optic disc in both sets of images. In addition, the different layers are represented in three different graphical formats.
Palabras clave
Peripapillary OCT
Layer segmentation
Thickness measurement
 
Descripción
This version of the conference paper has been accepted for publication, after peer review in Proceedings SPIE 12701, Fifteenth International Conference on Machine Vision (ICMV 2022), 127011A, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1117/12.2680545.
Versión del editor
https://doi.org/10.1117/12.2680545
Derechos
© (2023) Society of Photo-Optical Instrumentation Engineers (SPIE).
 
Todos os dereitos reservados. All rights reserved.
 

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias