Performance analysis of GAN approaches in the portable chest X-ray synthetic image generation for COVID-19 screening

Use este enlace para citar
http://hdl.handle.net/2183/36470Coleccións
- Investigación (FIC) [1705]
Metadatos
Mostrar o rexistro completo do ítemTítulo
Performance analysis of GAN approaches in the portable chest X-ray synthetic image generation for COVID-19 screeningAutor(es)
Data
2022Cita bibliográfica
Morís, D.I., Gende, M., de Moura, J., Novo, J., Ortega, M. (2022). Performance Analysis of GAN Approaches in the Portable Chest X-Ray Synthetic Image Generation for COVID-19 Screening. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2022. EUROCAST 2022. Lecture Notes in Computer Science, vol 13789. Springer, Cham. https://doi.org/10.1007/978-3-031-25312-6_47
Resumo
[Abstract]: COVID-19 mainly affects lung tissues, aspect that makes chest X-ray imaging useful to visualize this damage. In the context of the global pandemic, portable devices are advantageous for the daily practice.
Furthermore, Computer-aided Diagnosis systems developed with Deep Learning algorithms can support the clinicians while making decisions. However, data scarcity is an issue that hinders this process. Thus, in this work, we propose the performance analysis of 3 different stateof-the-art Generative Adversarial Networks (GAN) approaches that are used for synthetic image generation to improve the task of automatic COVID-19 screening using chest X-ray images provided by portable devices. Particularly, the results demonstrate a significant improvement in terms of accuracy, that raises 5.28% using the images generated by the best image translation model.
Palabras chave
Computer-aided Diagnosis
Portable Chest X-ray
COVID-19
Deep Learning
Synthetic Image Generation
Portable Chest X-ray
COVID-19
Deep Learning
Synthetic Image Generation
Descrición
Versión aceptada de: Morís, D.I., Gende, M., de Moura, J., Novo, J., Ortega, M. (2022). Performance Analysis of GAN Approaches in the Portable Chest X-Ray Synthetic Image Generation for COVID-19 Screening. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2022. EUROCAST 2022. Lecture Notes in Computer Science, vol 13789. Springer, Cham. https://doi.org/10.1007/978-3-031-25312-6_47
Versión do editor
Dereitos
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
ISBN
978-3-031-25312-6