Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Performance analysis of GAN approaches in the portable chest X-ray synthetic image generation for COVID-19 screening

Thumbnail
Ver/Abrir
IglesiasMoris_Daniel_2022_Performance_analysis_of_GAN_approaches_in_the_portable_chest_x_ray_synthetic_image.pdf (1.072Mb)
Use este enlace para citar
http://hdl.handle.net/2183/36470
Colecciones
  • Investigación (FIC) [1705]
Metadatos
Mostrar el registro completo del ítem
Título
Performance analysis of GAN approaches in the portable chest X-ray synthetic image generation for COVID-19 screening
Autor(es)
Iglesias Morís, Daniel
Gende, M.
Moura, Joaquim de
Novo Buján, Jorge
Ortega Hortas, Marcos
Fecha
2022
Cita bibliográfica
Morís, D.I., Gende, M., de Moura, J., Novo, J., Ortega, M. (2022). Performance Analysis of GAN Approaches in the Portable Chest X-Ray Synthetic Image Generation for COVID-19 Screening. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2022. EUROCAST 2022. Lecture Notes in Computer Science, vol 13789. Springer, Cham. https://doi.org/10.1007/978-3-031-25312-6_47
Resumen
[Abstract]: COVID-19 mainly affects lung tissues, aspect that makes chest X-ray imaging useful to visualize this damage. In the context of the global pandemic, portable devices are advantageous for the daily practice. Furthermore, Computer-aided Diagnosis systems developed with Deep Learning algorithms can support the clinicians while making decisions. However, data scarcity is an issue that hinders this process. Thus, in this work, we propose the performance analysis of 3 different stateof-the-art Generative Adversarial Networks (GAN) approaches that are used for synthetic image generation to improve the task of automatic COVID-19 screening using chest X-ray images provided by portable devices. Particularly, the results demonstrate a significant improvement in terms of accuracy, that raises 5.28% using the images generated by the best image translation model.
Palabras clave
Computer-aided Diagnosis
Portable Chest X-ray
COVID-19
Deep Learning
Synthetic Image Generation
 
Descripción
Versión aceptada de: Morís, D.I., Gende, M., de Moura, J., Novo, J., Ortega, M. (2022). Performance Analysis of GAN Approaches in the Portable Chest X-Ray Synthetic Image Generation for COVID-19 Screening. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2022. EUROCAST 2022. Lecture Notes in Computer Science, vol 13789. Springer, Cham. https://doi.org/10.1007/978-3-031-25312-6_47
Versión del editor
https://doi.org/10.1007/978-3-031-25312-6_47
Derechos
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
ISBN
978-3-031-25312-6

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias