Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sistema automático para la predicción de la respuesta a la terapia fotodinámica en la coriorretinopatía serosa central

Thumbnail
View/Open
Goyanes_Elena_2023_Sistema_automatico_para_la_prediccion_de_la respuesta_a_la_terapia_fotodinamica.pdf (781.9Kb)
Use this link to cite
http://hdl.handle.net/2183/36422
Collections
  • Investigación (FIC) [1723]
Metadata
Show full item record
Title
Sistema automático para la predicción de la respuesta a la terapia fotodinámica en la coriorretinopatía serosa central
Author(s)
Goyanes, Elena
Moura, Joaquim de
Fernández-Vigo, José Ignacio
García-Feijóo, Julián
Novo Buján, Jorge
Ortega Hortas, Marcos
Date
2023-12
Citation
E. Goyanes, J. de Moura, J. I. Fernández-Vigo, J. García-Feijóo, J. Novo, M. Ortega, "Sistema automático para la predicción de la respuesta a la terapia fotodinámica en la coriorretinopatía serosa central ", BioIntegraSaúde (BIS 2023), BioIntegraSaúde (BIS 2023), A Coruña, Spain, 2023.
Abstract
[Resumen] Se presenta un innovador método de deep learning para la segmentación automatizada en 3D de las regiones de fluido en imágenes de Tomografía de Coherencia ´Óptica (OCT) de pacientes con coriorretinopatía serosa central (CSCR), seguida de un análisis de respuesta a la Terapia Fotodinámica (PDT) en pacientes con CSCR. Este método no solo reduce sustancialmente el tiempo y esfuerzo requeridos para la segmentación, sino que también ofrece una técnica estandarizada, fomentando estudios de investigación a gran escala. Para llevar a cabo el trabajo utilizamos un conjunto de datos robusto compuesto por 2,769 imágenes OCT, logrando resultados altamente satisfactorios que superan a las demás propuestas del estado del arte. Esta investigación impulsa la integración del deep learning en la práctica clínica, mejorando la gestión de la CSCR al permitir la formulación de estrategias de tratamiento personalizadas y una atención optimizada al paciente.
Keywords
Deep learning
Segmentación automatizada
 
Rights
Todos os dereitos reservados.

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback