Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Explainable learning to analyze the outcome of COVID-19 patients using clinical data

Thumbnail
Ver/abrir
Moura_Joaquim_de_2023_Explainable_learning_to_analyze_the_outcome_of_COVID_19_patients.pdf (647.1Kb)
Use este enlace para citar
http://hdl.handle.net/2183/36391
Atribución-NoComercial-SinDerivadas 3.0 España
A non ser que se indique outra cousa, a licenza do ítem descríbese como Atribución-NoComercial-SinDerivadas 3.0 España
Coleccións
  • Investigación (FIC) [1683]
Metadatos
Mostrar o rexistro completo do ítem
Título
Explainable learning to analyze the outcome of COVID-19 patients using clinical data
Autor(es)
Olañeta Fariña, Daniel
Iglesias Morís, Daniel
Moura, Joaquim de
Marcos, Pedro J.
Míguez-Rey, Enrique
Novo Buján, Jorge
Ortega Hortas, Marcos
Data
2023
Cita bibliográfica
D. Olañeta, D. I. Morís, J. de Moura, P. J. Marcos, E. Míguez Rey, J. Novo, and M. Ortega; "Explainable learning to analyze the outcome of COVID-19 patients using clinical data", Procedia Computer Science, Vol. 225, pp. 238-247, 2023, doi: 10.1016/j.procs.2023.10.008
Resumo
[Abstract]: Patients at high risk of contracting COVID-19 require specialized monitoring throughout their illness to ensure optimal treatment at each stage. To support this monitoring, Computer-Aided Diagnosis (CAD) methods analyze clinical data to estimate the most likely outcome for each patient, using various clinical variables such as symptoms, medical history, and laboratory results to predict outcomes. Despite the numerous proposals for COVID-19 diagnosis using CAD methods, the lack of explainability in many machine learning models poses a challenge in incorporating these methods into clinical practice. Additionally, other crucial tasks such as estimating the risk of death or severe forms of the disease must be considered to identify cases that require greater monitoring. To overcome these challenges, we propose an explainable methodology for estimating the risk of hospitalization and death in COVID-19 patients using clinical data. Our methodology employs four machine learning algorithms, three feature selection methods, and a decision tree to provide explainability. Our approach achieves an accuracy of 86.16% ± 0.74% for the estimation of hospitalization risk with 29 features, and an accuracy of 86.40% ± 1.80% for the estimation of the risk of death with 26 features. Moreover, our methodology provides valuable insights into the relationship between clinical variables and patient outcomes, which can inform more robust and informed clinical decision-making and improve our understanding of the disease. We demonstrate the potential of our transparent and effective CAD methods to support clinical decision-making in COVID-19 patient care and further research, offering a promising solution to overcome the challenges in incorporating CAD methods into clinical practice.
Palabras chave
Feature selection
Explainable machine learning
Decision trees
Outcome estimation
COVID-19
 
Versión do editor
https://doi.org/10.1016/j.procs.2023.10.008
Dereitos
Atribución-NoComercial-SinDerivadas 3.0 España

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións