Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Explainable learning to analyze the outcome of COVID-19 patients using clinical data

Thumbnail
Ver/Abrir
Moura_Joaquim_de_2023_Explainable_learning_to_analyze_the_outcome_of_COVID_19_patients.pdf (647.1Kb)
Use este enlace para citar
http://hdl.handle.net/2183/36391
Atribución-NoComercial-SinDerivadas 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 3.0 España
Colecciones
  • Investigación (FIC) [1678]
Metadatos
Mostrar el registro completo del ítem
Título
Explainable learning to analyze the outcome of COVID-19 patients using clinical data
Autor(es)
Olañeta Fariña, Daniel
Iglesias Morís, Daniel
Moura, Joaquim de
Marcos, Pedro J.
Míguez-Rey, Enrique
Novo Buján, Jorge
Ortega Hortas, Marcos
Fecha
2023
Cita bibliográfica
D. Olañeta, D. I. Morís, J. de Moura, P. J. Marcos, E. Míguez Rey, J. Novo, and M. Ortega; "Explainable learning to analyze the outcome of COVID-19 patients using clinical data", Procedia Computer Science, Vol. 225, pp. 238-247, 2023, doi: 10.1016/j.procs.2023.10.008
Resumen
[Abstract]: Patients at high risk of contracting COVID-19 require specialized monitoring throughout their illness to ensure optimal treatment at each stage. To support this monitoring, Computer-Aided Diagnosis (CAD) methods analyze clinical data to estimate the most likely outcome for each patient, using various clinical variables such as symptoms, medical history, and laboratory results to predict outcomes. Despite the numerous proposals for COVID-19 diagnosis using CAD methods, the lack of explainability in many machine learning models poses a challenge in incorporating these methods into clinical practice. Additionally, other crucial tasks such as estimating the risk of death or severe forms of the disease must be considered to identify cases that require greater monitoring. To overcome these challenges, we propose an explainable methodology for estimating the risk of hospitalization and death in COVID-19 patients using clinical data. Our methodology employs four machine learning algorithms, three feature selection methods, and a decision tree to provide explainability. Our approach achieves an accuracy of 86.16% ± 0.74% for the estimation of hospitalization risk with 29 features, and an accuracy of 86.40% ± 1.80% for the estimation of the risk of death with 26 features. Moreover, our methodology provides valuable insights into the relationship between clinical variables and patient outcomes, which can inform more robust and informed clinical decision-making and improve our understanding of the disease. We demonstrate the potential of our transparent and effective CAD methods to support clinical decision-making in COVID-19 patient care and further research, offering a promising solution to overcome the challenges in incorporating CAD methods into clinical practice.
Palabras clave
Feature selection
Explainable machine learning
Decision trees
Outcome estimation
COVID-19
 
Versión del editor
https://doi.org/10.1016/j.procs.2023.10.008
Derechos
Atribución-NoComercial-SinDerivadas 3.0 España

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias