dc.contributor.author | Goyanes, Elena | |
dc.contributor.author | Moura, Joaquim de | |
dc.contributor.author | Fernández-Vigo, José Ignacio | |
dc.contributor.author | Fernández-Vigo, José A. | |
dc.contributor.author | Novo Buján, Jorge | |
dc.contributor.author | Ortega Hortas, Marcos | |
dc.date.accessioned | 2024-04-24T18:05:29Z | |
dc.date.available | 2024-04-24T18:05:29Z | |
dc.date.issued | 2024-04 | |
dc.identifier.citation | Goyanes, E., de Moura, J., Fernández-Vigo, J. I., Fernández-Vigo, J. A., Novo, J., & Ortega, M. (2024). Automatic simultaneous ciliary muscle segmentation and biomarker extraction in AS-OCT images using deep learning-based approaches. Biomedical Signal Processing and Control, 90, 105851. https://doi.org/10.1016/j.bspc.2023.105851 | es_ES |
dc.identifier.issn | 1746-8094 | |
dc.identifier.issn | 1746-8108 | |
dc.identifier.uri | http://hdl.handle.net/2183/36340 | |
dc.description.abstract | [Abstract]: Recent clinical studies have emphasized the importance of understanding the morphology and mechanics of the
ciliary muscle. The ciliary muscle plays a vital role in various functions related to the anterior segment of the
eye, including the regulation of intraocular pressure and the maintenance of the shape of the crystalline lens. To
advance research in this area, we propose a fully automated methodology for the segmentation and biomarker
measurement of the ciliary muscle in two different scan depths (6 mm and 16 mm), which are commonly
used by clinicians to analyze biomarkers. Our methodology aims to provide repeatable, and immediate results
through an exhaustive analysis of different network architectures, encoders, and transfer learning strategies.
We also extracted a comprehensive set of relevant biomarkers, including parameters that provide essential
information about its behavior during the accommodation process, overall dimensions, and biomechanical
properties. These biomarkers can help clinicians and researchers in the diagnoses and monitor of different
ocular diseases such as glaucoma, myopia, and presbyopia and develop new therapeutic strategies, potentially
leading to more effective treatments and improved patient outcomes. Our methodology achieved accurate
qualitative and quantitative results, with high accuracy values of 0.9665 ± 0.1280 and 0.9772 ± 0.0873 for the
best combinations for 6 mm and 16 mm, respectively. Our proposed system provides a valuable and automatic
tool for clinicians and researchers in the segmentation and analysis of the ciliary muscle in AS-OCT images. | es_ES |
dc.description.sponsorship | This work was supported by Ministerio de Ciencia e Innovación, Government of Spain through the research project with [grant numbers RTI2018-095894-B-I00, PID2019-108435RB-I00, TED2021-131201B–I00, and PDC2022-133132-I00]; Consellería de Educación, Universidade, e Formación Profesional, Xunta de Galicia, Grupos de Referencia Competitiva, [grant number ED431C 2020/24]; predoctoral grant [grant number ED481A-2023-152]; CITIC, Centro de Investigación de Galicia [grant number ED431G 2019/01], receives financial support from Consellería de Educación, Universidade e Formación Profesional, Xunta de Galicia, through the ERDF (80%) and Secretaría Xeral de Universidades (20%). Funding for open access charge: Universidade da Coruña/CISUG. | es_ES |
dc.description.sponsorship | Xunta de Galicia; ED431C 2020/24 | es_ES |
dc.description.sponsorship | Xunta de Galicia; ED481A-2023-152 | es_ES |
dc.description.sponsorship | Xunta de Galicia; ED431G 2019/01 | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.uri | https://doi.org/10.1016/j.bspc.2023.105851 | es_ES |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | * |
dc.subject | CAD system | es_ES |
dc.subject | AS-OCT | es_ES |
dc.subject | Ciliary muscle | es_ES |
dc.subject | Segmentation | es_ES |
dc.subject | Biomarkers | es_ES |
dc.subject | Deep learning | es_ES |
dc.title | Automatic simultaneous ciliary muscle segmentation and biomarker extraction in AS-OCT images using deep learning-based approaches | es_ES |
dc.type | journal article | es_ES |
dc.rights.accessRights | open access | es_ES |
UDC.journalTitle | Biomedical Signal Processing and Control | es_ES |
UDC.volume | 90 | es_ES |
UDC.startPage | 105851 | es_ES |
dc.identifier.doi | 10.1016/j.bspc.2023.105851 | |
UDC.coleccion | Investigación | es_ES |
UDC.departamento | Ciencias da Computación e Tecnoloxías da Información | es_ES |
UDC.grupoInv | Grupo de Visión Artificial e Recoñecemento de Patróns (VARPA) | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095894-B-I00/ES/DESARROLLO DE TECNOLOGIAS INTELIGENTES PARA DIAGNOSTICO DE LA DMAE BASADAS EN EL ANALISIS AUTOMATICO DE NUEVAS MODALIDADES HETEROGENEAS DE ADQUISICION DE IMAGEN OFTALMOLOGICA | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-108435RB-I00/ES/CUANTIFICACION Y CARACTERIZACION COMPUTACIONAL DE IMAGEN MULTIMODAL OFTALMOLOGICA: ESTUDIOS EN ESCLEROSIS MULTIPLE | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2024/TED2021-131201B-I00/ES/DIAGNÓSTICO DIGITAL: TRANSFORMACIÓN DE LA DETECCIÓN DE ENFERMEDADES NEUROVASCULARES Y DEL TRATAMIENTO DE LOS PACIENTES | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2024/PDC2022-133132-I00/ES/MEJORAS EN EL DIAGNÓSTICO E INVESTIGACIÓN CLÍNICO MEDIANTE TECNOLOGÍAS INTELIGENTES APLICADAS LA IMAGEN OFTALMOLÓGICA | es_ES |