Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Explainable artificial intelligence for the automated assessment of the retinal vascular tortuosity

Thumbnail
View/Open
Hervella_AlvaroS_2024_Explainable_artificial_intelligence_for_the_automated_assessment_of_the_retinal_vascular_tortuosity.pdf (4.815Mb)
Use this link to cite
http://hdl.handle.net/2183/36328
Atribución 3.0 España
Except where otherwise noted, this item's license is described as Atribución 3.0 España
Collections
  • Investigación (FIC) [1701]
Metadata
Show full item record
Title
Explainable artificial intelligence for the automated assessment of the retinal vascular tortuosity
Author(s)
Hervella, Álvaro S.
Ramos, Lucía
Rouco, J.
Novo Buján, Jorge
Ortega Hortas, Marcos
Date
2024
Citation
Hervella, Á.S., Ramos, L., Rouco, J. et al. Explainable artificial intelligence for the automated assessment of the retinal vascular tortuosity. Med Biol Eng Comput 62, 865–881 (2024). https://doi.org/10.1007/s11517-023-02978-w
Abstract
[Abstract]: Retinal vascular tortuosity is an excessive bending and twisting of the blood vessels in the retina that is associated with numerous health conditions. We propose a novel methodology for the automated assessment of the retinal vascular tortuosity from color fundus images. Our methodology takes into consideration several anatomical factors to weigh the importance of each individual blood vessel. First, we use deep neural networks to produce a robust extraction of the different anatomical structures. Then, the weighting coefficients that are required for the integration of the different anatomical factors are adjusted using evolutionary computation. Finally, the proposed methodology also provides visual representations that explain the contribution of each individual blood vessel to the predicted tortuosity, hence allowing us to understand the decisions of the model. We validate our proposal in a dataset of color fundus images providing a consensus ground truth as well as the annotations of five clinical experts. Our proposal outperforms previous automated methods and offers a performance that is comparable to that of the clinical experts. Therefore, our methodology demonstrates to be a viable alternative for the assessment of the retinal vascular tortuosity. This could facilitate the use of this biomarker in clinical practice and medical research.
Keywords
Blood vessels
Eye fundus
Ophthalmology
Deep learning
Genetic algorithms
 
Description
Financiado para publicación en acceso aberto: Universidade da Coruña/CISUG
Editor version
https://doi.org/10.1007/s11517-023-02978-w
Rights
Atribución 3.0 España

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback