Sentiment analysis for reviews and microtexts based on lexico-syntactic knowledge
Use este enlace para citar
http://hdl.handle.net/2183/36136
A non ser que se indique outra cousa, a licenza do ítem descríbese como Atribución 4.0 Internacional
Coleccións
Metadatos
Mostrar o rexistro completo do ítemTítulo
Sentiment analysis for reviews and microtexts based on lexico-syntactic knowledgeAutor(es)
Data
2013Cita bibliográfica
Vilares, D. (2013). Sentiment analysis for reviews and microtexts based on lexico-syntactic knowlegde. FDIA 2013: Fifth BCS-IRSG Symposium on Future Directions in Information Access. DOI: 10.14236/ewic/FDIA2013.8
Resumo
[Abstract]: We describe two methods to perform sentiment analysis both on long and short texts written in Spanish language. We first present an unsupervised method based on dependency parsing which calculates the semantic orientation (SO) of the sentences in order to classify the polarity. We then propose a hybrid approach which uses the computed SO and lexico-syntactic knowledge as features for a supervised classifier. Experimental results show the utility of employing syntactic information to classify the polarity in both types of texts and the importance of defining mechanisms to adapt the system for a specific domain and social medium.
Palabras chave
Sentiment Analysis
Opinion Mining
Dependency Parsing
Machine Learning
Opinion Mining
Dependency Parsing
Machine Learning
Versión do editor
Dereitos
Atribución 4.0 Internacional