Mostrar o rexistro simple do ítem

dc.contributor.authorDafonte, Carlos
dc.contributor.authorGarabato, D.
dc.contributor.authorÁlvarez, M. A.
dc.contributor.authorManteiga, Minia
dc.date.accessioned2024-02-02T13:17:09Z
dc.date.available2024-02-02T13:17:09Z
dc.date.issued2018-11
dc.identifier.citationC. Dafonte, D. Garabato, M.A. Álvarez, and M. Manteiga, "Distributed Fast Self-Organized Maps for Massive Spectrophotometric Data Analysis", Sensors, vol. 18, n. 5, 1419, 2018, https://doi.org/10.3390/s18051419es_ES
dc.identifier.urihttp://hdl.handle.net/2183/35358
dc.descriptionThis article belongs to the Special Issue Selected Papers from UCAmI 2017 – the 11th International Conference on Ubiquitous Computing and Ambient Intelligence)es_ES
dc.description.abstract[Abstract]: Analyzing huge amounts of data becomes essential in the era of Big Data, where databases are populated with hundreds of Gigabytes that must be processed to extract knowledge. Hence, classical algorithms must be adapted towards distributed computing methodologies that leverage the underlying computational power of these platforms. Here, a parallel, scalable, and optimized design for self-organized maps (SOM) is proposed in order to analyze massive data gathered by the spectrophotometric sensor of the European Space Agency (ESA) Gaia spacecraft, although it could be extrapolated to other domains. The performance comparison between the sequential implementation and the distributed ones based on Apache Hadoop and Apache Spark is an important part of the work, as well as the detailed analysis of the proposed optimizations. Finally, a domain-specific visualization tool to explore astronomical SOMs is presented.es_ES
dc.description.sponsorshipThis work was supported by the Spanish FEDER through Grants ESP2016-80079-C2-2-R; Spanish MECD FPU16/03827; and Xunta de Galicia (Centro Singular de Investigación de Galicia acreditation 2016–2019) and European Union (European Regional Development Fund—ERDF).es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.relation.urihttps://doi.org/10.3390/s18051419es_ES
dc.rightsAtribución 4.0 Internacional (CC BY 4.0 )es_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectRemote sensinges_ES
dc.subjectComputational astrophysicses_ES
dc.subjectDistributed computinges_ES
dc.subjectFast self-organized mapses_ES
dc.subjectApache Hadoopes_ES
dc.subjectApache Sparkes_ES
dc.titleDistributed Fast Self-Organized Maps for Massive Spectrophotometric Data Analysises_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
UDC.journalTitleSensorses_ES
UDC.volume18es_ES
UDC.issue5es_ES
dc.identifier.doi10.3390/s18051419
UDC.coleccionInvestigaciónes_ES
UDC.departamentoCiencias da Computación e Tecnoloxías da Informaciónes_ES
UDC.grupoInvLaboratorio Interdisciplinar de Aplicacións da Intelixencia Artificial (LIA2)es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/ESP2016-80079-C2-2-R/ES/MINERIA DE DATOS DE GAIA PARA ESTUDIAR LA VIA LACTEAes_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/MECD/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/FPU16%2F03827/ES/es_ES


Ficheiros no ítem

Thumbnail
Thumbnail

Este ítem aparece na(s) seguinte(s) colección(s)

Mostrar o rexistro simple do ítem