Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Distributed Fast Self-Organized Maps for Massive Spectrophotometric Data Analysis

Thumbnail
Ver/Abrir
Dafonte_Carlos_2018_Distributed_Fast_Self_Organized_Maps_for_Massive_Spectrophotometric_Data Analysis.pdf (5.067Mb)
Use este enlace para citar
http://hdl.handle.net/2183/35358
Atribución 4.0 Internacional (CC BY 4.0 )
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional (CC BY 4.0 )
Colecciones
  • Investigación (FIC) [1685]
Metadatos
Mostrar el registro completo del ítem
Título
Distributed Fast Self-Organized Maps for Massive Spectrophotometric Data Analysis
Autor(es)
Dafonte, Carlos
Garabato, D.
Álvarez, M. A.
Manteiga, Minia
Fecha
2018-11
Cita bibliográfica
C. Dafonte, D. Garabato, M.A. Álvarez, and M. Manteiga, "Distributed Fast Self-Organized Maps for Massive Spectrophotometric Data Analysis", Sensors, vol. 18, n. 5, 1419, 2018, https://doi.org/10.3390/s18051419
Resumen
[Abstract]: Analyzing huge amounts of data becomes essential in the era of Big Data, where databases are populated with hundreds of Gigabytes that must be processed to extract knowledge. Hence, classical algorithms must be adapted towards distributed computing methodologies that leverage the underlying computational power of these platforms. Here, a parallel, scalable, and optimized design for self-organized maps (SOM) is proposed in order to analyze massive data gathered by the spectrophotometric sensor of the European Space Agency (ESA) Gaia spacecraft, although it could be extrapolated to other domains. The performance comparison between the sequential implementation and the distributed ones based on Apache Hadoop and Apache Spark is an important part of the work, as well as the detailed analysis of the proposed optimizations. Finally, a domain-specific visualization tool to explore astronomical SOMs is presented.
Palabras clave
Remote sensing
Computational astrophysics
Distributed computing
Fast self-organized maps
Apache Hadoop
Apache Spark
 
Descripción
This article belongs to the Special Issue Selected Papers from UCAmI 2017 – the 11th International Conference on Ubiquitous Computing and Ambient Intelligence)
Versión del editor
https://doi.org/10.3390/s18051419
Derechos
Atribución 4.0 Internacional (CC BY 4.0 )

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias