Mostrar o rexistro simple do ítem
Detección automática de la enfermedad de Alzheimer a partir de imágenes OCT retinianas en ratones transgénicos PS19 tau
dc.contributor.advisor | Moura, Joaquim de | |
dc.contributor.advisor | Ortega Hortas, Marcos | |
dc.contributor.author | Redondo Loureiro, Pedro | |
dc.contributor.other | Universidade da Coruña. Facultade de Informática | es_ES |
dc.date.accessioned | 2023-10-24T17:39:49Z | |
dc.date.available | 2023-10-24T17:39:49Z | |
dc.date.issued | 2023 | |
dc.identifier.uri | http://hdl.handle.net/2183/33916 | |
dc.description.abstract | [Resumen]: La enfermedad de Alzheimer representa uno de los desafíos más apremiantes en el ámbito médico y farmacológico actual. Identificar biomarcadores efectivos y desarrollar técnicas de diagnóstico temprano son elementos clave para combatir esta epidemia silenciosa. En este entorno, el presente Trabajo de Fin de Grado (TFG) explora un enfoque novedoso: el uso de imágenes de tomografía de coherencia óptica (OCT) retinianas obtenidas de ratones transgénicos PS19 tau. Estos ratones se caracterizan por su susceptibilidad a desarrollar sintomatología similar a la del alzhéimer en humanos, lo que los convierte en modelos preclínicos ideales para esta investigación. Nuestro enfoque innovador emplea técnicas de aprendizaje profundo para construir un sistema de segmentación automática tridimensional. Este sistema es capaz de extraer biomarcadores retinianos críticos que pueden correlacionarse con el desarrollo de la enfermedad de Alzheimer. Este conjunto de algoritmos forma parte de un pipeline de diagnóstico automatizado, complementado por un modelo de clasificación específico para estos biomarcadores. Los resultados iniciales son alentadores, mostrando un alto grado de precisión y validando la aplicabilidad de nuestra metodología en entornos preclínicos y farmacológicos. Este enfoque no solo mejora la velocidad y la eficacia del diagnóstico, sino que también reduce la subjetividad y la variabilidad asociadas a la interpretación humana. El proyecto se desglosa en dos fases fundamentales: la primera enfocada en la segmentación automática de imágenes OCT para la identificación de biomarcadores relevantes, y la segunda en la clasificación robusta de dichos biomarcadores para un diagnóstico preciso de la enfermedad de Alzheimer. | es_ES |
dc.description.abstract | [Abstract]: The Alzheimer’s disease represents one of the most pressing challenges in today’s medical and pharmacological fields. Identifying effective biomarkers and developing early diagnosis techniques are key elements in combating this silent epidemic. Within this context, the present Thesis explores a novel approach: the use of Optical Coherence Tomography (OCT) retinal images obtained from PS19 tau transgenic mice. These mice are characterized by their susceptibility to develop symptoms similar to Alzheimer’s in humans, making them ideal preclinical models for this research. Our innovative approach employs deep learning techniques to build a three-dimensional automatic segmentation system. This system is capable of extracting critical retinal biomarkers that can be correlated with the development of Alzheimer’s disease. This set of algorithms forms part of an automated diagnostic pipeline, complemented by a specific classification model for these biomarkers. The initial results are encouraging, showing a high degree of accuracy and validating the applicability of our methodology in preclinical and pharmacological settings. This approach not only improves the speed and efficacy of the diagnosis but also reduces the subjectivity and variability associated with human interpretation. The project is broken down into two fundamental phases: the first focuses on the automatic segmentation of OCT images for the identification of relevant biomarkers, and the second on the robust classification of these biomarkers for an accurate diagnosis of Alzheimer’s disease. | es_ES |
dc.language.iso | spa | es_ES |
dc.rights | Todos los derechos reservados. | es_ES |
dc.subject | Aprendizaje profundo | es_ES |
dc.subject | Neuro-oftalmología | es_ES |
dc.subject | Retina | es_ES |
dc.subject | Tomografía de coherencia óptica | es_ES |
dc.subject | Visión por computador | es_ES |
dc.subject | Segmentación de imágenes | es_ES |
dc.subject | Clasificación de marcadores | es_ES |
dc.subject | Ratones transgénicos PS19 tau | es_ES |
dc.subject | Enfermedad de Alzheimer | es_ES |
dc.subject | Deep learning | es_ES |
dc.subject | Neuro-ophthalmology | es_ES |
dc.subject | Optical coherence tomography (OCT) | es_ES |
dc.subject | Computer vision | es_ES |
dc.subject | Image segmentation | es_ES |
dc.subject | Image classification | es_ES |
dc.subject | Tau transgenic PS19 mice | es_ES |
dc.subject | Alzheimer’s disease | es_ES |
dc.title | Detección automática de la enfermedad de Alzheimer a partir de imágenes OCT retinianas en ratones transgénicos PS19 tau | es_ES |
dc.type | bachelor thesis | |
dc.rights.accessRights | open access | es_ES |
dc.description.traballos | Traballo fin de grao (UDC.FIC). Ciencia e enxeñaría de datos. Curso 2022/2023 | es_ES |
UDC.coleccion | Traballos académicos | es_ES |
UDC.tipotrab | TFG | es_ES |
UDC.titulacion | Grao en Ciencia e Enxeñaría de Datos | es_ES |