Mostrar o rexistro simple do ítem
Parallel-FST: A feature selection library for multicore clusters
dc.contributor.author | Beceiro, Bieito | |
dc.contributor.author | González-Domínguez, Jorge | |
dc.contributor.author | Touriño, Juan | |
dc.date.accessioned | 2023-05-12T08:43:35Z | |
dc.date.available | 2023-05-12T08:43:35Z | |
dc.date.issued | 2022-11 | |
dc.identifier.citation | B. Beceiro, J. González-Domínguez & J. Touriño, "Parallel-FST: A feature selection library for multicore clusters", Journal of Parallel and Distributed Computing, 169, 2022, pp. 106-116. doi: 10.1016/j.jpdc.2022.06.012 | es_ES |
dc.identifier.uri | http://hdl.handle.net/2183/33071 | |
dc.description | Financiado para publicación en acceso aberto: Universidade da Coruña/CISUG | es_ES |
dc.description.abstract | [Abstract]: Feature selection is a subfield of machine learning focused on reducing the dimensionality of datasets by performing a computationally intensive process. This work presents Parallel-FST, a publicly available parallel library for feature selection that includes seven methods which follow a hybrid MPI/multithreaded approach to reduce their runtime when executed on high performance computing systems. Performance tests were carried out on a 256-core cluster, where Parallel-FST obtained speedups of up to 229x for representative datasets and it was able to analyze a 512 GB dataset, which was not previously possible with a sequential counterpart library due to memory constraints. | es_ES |
dc.description.sponsorship | This research was supported by the Ministry of Science and Innovation of Spain (PID2019-104184RB-I00/AEI/10.13039/ 501100011033), by the Ministry of Universities of Spain under grant FPU20/00997, and by Xunta de Galicia and FEDER funds of the EU (CITIC, Centro de Investigación de Galicia accreditation 2019-2022, ref. ED431G 2019/01; Consolidation Program of Competitive Reference Groups, ED431C 2021/30). | es_ES |
dc.description.sponsorship | Xunta de Galicia; ED431G 2019/01 | es_ES |
dc.description.sponsorship | Xunta de Galicia; ED431C 2021/30 | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-104184RB-I00/ES/DESAFIOS ACTUALES EN HPC: ARQUITECTURAS, SOFTWARE Y APLICACIONES | es_ES |
dc.relation.uri | https://doi.org/10.1016/j.jpdc.2022.06.012 | es_ES |
dc.rights | Atribución-NoComercial-SinDerivadas 3.0 España | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | * |
dc.subject | Feature selection | es_ES |
dc.subject | Mutual information | es_ES |
dc.subject | MPI | es_ES |
dc.subject | HyperThreading | es_ES |
dc.subject | High performance computing | es_ES |
dc.title | Parallel-FST: A feature selection library for multicore clusters | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.rights.access | info:eu-repo/semantics/openAccess | es_ES |
UDC.journalTitle | Journal of Parallel and Distributed Computing | es_ES |
UDC.volume | 169 | es_ES |
UDC.startPage | 106 | es_ES |
UDC.endPage | 116 | es_ES |
dc.identifier.doi | 10.1016/j.jpdc.2022.06.012 | |
UDC.coleccion | Investigación | es_ES |
UDC.departamento | Enxeñaría de Computadores | es_ES |
UDC.grupoInv | Grupo de Arquitectura de Computadores (GAC) | es_ES |
Ficheiros no ítem
Este ítem aparece na(s) seguinte(s) colección(s)
-
Investigación (FIC) [1634]