Parallel-FST: A feature selection library for multicore clusters

Ver/ abrir
Use este enlace para citar
http://hdl.handle.net/2183/33071
A non ser que se indique outra cousa, a licenza do ítem descríbese como Atribución-NoComercial-SinDerivadas 3.0 España
Coleccións
- Investigación (FIC) [1634]
Metadatos
Mostrar o rexistro completo do ítemTítulo
Parallel-FST: A feature selection library for multicore clustersData
2022-11Cita bibliográfica
B. Beceiro, J. González-Domínguez & J. Touriño, "Parallel-FST: A feature selection library for multicore clusters", Journal of Parallel and Distributed Computing, 169, 2022, pp. 106-116. doi: 10.1016/j.jpdc.2022.06.012
Resumo
[Abstract]: Feature selection is a subfield of machine learning focused on reducing the dimensionality of datasets by performing a computationally intensive process. This work presents Parallel-FST, a publicly available parallel library for feature selection that includes seven methods which follow a hybrid MPI/multithreaded approach to reduce their runtime when executed on high performance computing systems. Performance tests were carried out on a 256-core cluster, where Parallel-FST obtained speedups of up to 229x for representative datasets and it was able to analyze a 512 GB dataset, which was not previously possible with a sequential counterpart library due to memory constraints.
Palabras chave
Feature selection
Mutual information
MPI
HyperThreading
High performance computing
Mutual information
MPI
HyperThreading
High performance computing
Descrición
Financiado para publicación en acceso aberto: Universidade da Coruña/CISUG
Versión do editor
Dereitos
Atribución-NoComercial-SinDerivadas 3.0 España