Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bandwidth selection for statistical matching and prediction

Thumbnail
Ver/abrir
Barbeito_Cal_Ines_2022_Bandwidth_selection_statistical_matching_and_prediction.pdf - Artigo (652.0Kb)
Use este enlace para citar
http://hdl.handle.net/2183/32719
Atribución 4.0 International
A non ser que se indique outra cousa, a licenza do ítem descríbese como Atribución 4.0 International
Coleccións
  • Investigación (FIC) [1728]
Metadatos
Mostrar o rexistro completo do ítem
Título
Bandwidth selection for statistical matching and prediction
Autor(es)
Barbeito, Inés
Cao, Ricardo
Sperlich, Stefan
Data
2022
Cita bibliográfica
I. Barbeito, R. Cao y S. Sperlich, "Bandwidth selection for statistical matching and prediction", TEST, 2022. Disponible: https://doi.org/10.1007/s11749-022-00838-7
Resumo
[Abstract]: While there exist many bandwidth selectors for estimation, bandwidth selection for statistical matching and prediction has hardly been studied so far. We introduce a computationally attractive selector for nonparametric out-of-sample prediction problems like data matching, impact evaluation, scenario simulations or imputing missings. Even though the method is bootstrap based, we can derive closed expressions for the criterion function which avoids the need of Monte Carlo approximations. We study both, asymptotic and finite sample performance. The derived consistency, convergence rate and extensive simulation studies show the successful operation of the selector. The method is illustrated by applying it to real data for studying the gender wage gap in Spain. Specifically, the salary of Spanish women is predicted nonparametrically by the wage equation estimated for men while conditioned on their own (i.e., women’s) characteristics. An important discrepancy between observed and predicted wages is found, exhibiting a serious gender wage gap.
Palabras chave
Bandwidth selection
Statistical matching
Counterfactual analysis
Nonparametric prediction
Smooth bootstrap
 
Descrición
Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.
Versión do editor
https://doi.org/10.1007/s11749-022-00838-7
Dereitos
Atribución 4.0 International

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións