Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bandwidth selection for statistical matching and prediction

Thumbnail
View/Open
Barbeito_Cal_Ines_2022_Bandwidth_selection_statistical_matching_and_prediction.pdf - Artigo (652.0Kb)
Use this link to cite
http://hdl.handle.net/2183/32719
Atribución 4.0 International
Except where otherwise noted, this item's license is described as Atribución 4.0 International
Collections
  • Investigación (FIC) [1728]
Metadata
Show full item record
Title
Bandwidth selection for statistical matching and prediction
Author(s)
Barbeito, Inés
Cao, Ricardo
Sperlich, Stefan
Date
2022
Citation
I. Barbeito, R. Cao y S. Sperlich, "Bandwidth selection for statistical matching and prediction", TEST, 2022. Disponible: https://doi.org/10.1007/s11749-022-00838-7
Abstract
[Abstract]: While there exist many bandwidth selectors for estimation, bandwidth selection for statistical matching and prediction has hardly been studied so far. We introduce a computationally attractive selector for nonparametric out-of-sample prediction problems like data matching, impact evaluation, scenario simulations or imputing missings. Even though the method is bootstrap based, we can derive closed expressions for the criterion function which avoids the need of Monte Carlo approximations. We study both, asymptotic and finite sample performance. The derived consistency, convergence rate and extensive simulation studies show the successful operation of the selector. The method is illustrated by applying it to real data for studying the gender wage gap in Spain. Specifically, the salary of Spanish women is predicted nonparametrically by the wage equation estimated for men while conditioned on their own (i.e., women’s) characteristics. An important discrepancy between observed and predicted wages is found, exhibiting a serious gender wage gap.
Keywords
Bandwidth selection
Statistical matching
Counterfactual analysis
Nonparametric prediction
Smooth bootstrap
 
Description
Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.
Editor version
https://doi.org/10.1007/s11749-022-00838-7
Rights
Atribución 4.0 International

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback