Mostrar o rexistro simple do ítem

dc.contributor.authorPájaro Diéguez, Manuel
dc.contributor.authorOtero-Muras, Irene
dc.contributor.authorAlonso, Antonio A.
dc.date.accessioned2023-01-05T12:11:46Z
dc.date.available2023-01-05T12:11:46Z
dc.date.issued2022
dc.identifier.citationM. Pájaro, I. Otero-Muras and A. A. Alonso, "First passage times as a measure of hysteresis in stochastic gene regulatory circuits," IFAC-PapersOnLine, vol. 55, (18), pp. 50-55, 2022. DOI: 10.1016/j.ifacol.2022.08.029.es_ES
dc.identifier.urihttp://hdl.handle.net/2183/32301
dc.descriptionGAIN Oportunius Grant from Xunta de Galicia.es_ES
dc.description.abstract[Abstract]: In the context of phenotype switching and cell fate determination, numerousexperimental studies report hysteresis, despite the fact that the (forward) Chemical Master Equation governing the inherently stochastic underlying gene regulatory networks has a unique steady state (precluding memory effects and hysteresis). In previous works, we demonstrate thathysteresis is a transient phenomenon in systems far from the thermodynamic limit, using the convergence rates of the partial integro-differential equation associated to the forward master equation governing the stochastic process. Here, we make use of the backward master equationto quantify hysteresis and irreversibility based on First Passage Times. First, we derive the backward master equation for a gene regulatory network with protein production in bursts. Solving this equation, we obtain the probability distributions of the first times to reach some fixed final state from one starting state. The mean first passage time provides a measure to quantify how hysteresis and irreversibility in gene regulation at the singlecell level are transient effects that vanish at steady state. In addition, we provide a theoretical basis that reconciles phenotype coexistence and prevalence far from the thermodynamic limit. In fact, we substitute the notion of pseudo-potential (the so-called Waddington landscape) by a time evolving landscape built upon the Chemical Master Equation (CME) in which phenotypes,rather than prevail, persist with different intensities.es_ES
dc.description.sponsorshipMinisterio de Ciencia e Innovación/Agencia Estatal de Investigación; FJC2019-041397-Ies_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relation.urihttps://doi.org/10.1016/j.ifacol.2022.08.029es_ES
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)es_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectGene regulationes_ES
dc.subjectcell decision-makinges_ES
dc.subjecthysteresises_ES
dc.subjectChemical Master Equationes_ES
dc.subjectstochastic dynamicses_ES
dc.subjectbistabilityes_ES
dc.subjectFirst Passage Timeses_ES
dc.titleFirst passage times as a measure of hysteresis in stochastic gene regulatory circuitses_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.rights.accessinfo:eu-repo/semantics/openAccesses_ES
UDC.journalTitleIFAC PapersOnLinees_ES
UDC.volume55es_ES
UDC.issue18es_ES
UDC.startPage50es_ES
UDC.endPage55es_ES
dc.identifier.doi10.1016/j.ifacol.2022.08.029
UDC.conferenceTitleIFAC Workshop on Thermodynamics Foundations of Mathematical Systems Theory TFMST (4º. 2022. Montreal, Canadá)es_ES


Ficheiros no ítem

Thumbnail
Thumbnail

Este ítem aparece na(s) seguinte(s) colección(s)

Mostrar o rexistro simple do ítem