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Abstract: In the context of phenotype switching and cell fate determination, numerous
experimental studies report hysteresis, despite the fact that the (forward) Chemical Master
Equation governing the inherently stochastic underlying gene regulatory networks has a unique
steady state (precluding memory effects and hysteresis). In previous works, we demonstrate that
hysteresis is a transient phenomenon in systems far from the thermodynamic limit, using the
convergence rates of the partial integro-differential equation associated to the forward master
equation governing the stochastic process. Here, we make use of the backward master equation
to quantify hysteresis and irreversibility based on First Passage Times.
First, we derive the backward master equation for a gene regulatory network with protein
production in bursts. Solving this equation, we obtain the probability distributions of the first
times to reach some fixed final state from one starting state. The mean first passage time
provides a measure to quantify how hysteresis and irreversibility in gene regulation at the single
cell level are transient effects that vanish at steady state. In addition, we provide a theoretical
basis that reconciles phenotype coexistence and prevalence far from the thermodynamic limit.
In fact, we substitute the notion of pseudo-potential (the so-called Waddington landscape) by a
time evolving landscape built upon the Chemical Master Equation (CME) in which phenotypes,
rather than prevail, persist with different intensities.

Keywords: Gene regulation, cell decision-making, hysteresis, Chemical Master Equation,
stochastic dynamics, bistability, First Passage Times.

1. INTRODUCTION

Hysteresis is a well known phenomenon in nonlinear dy-
namics. It occurs when a graded stimulus produces a
discontinuous (ON-OFF) response in the measured steady
state of the system upon a given threshold and, in addition,
the system switches on and off for two different thresholds
of the signal. In this way, the system’s steady state follows
a different path depending on whether the input signal is
increasing or decreasing. This type of ON-OFF response
is a widespread mechanism in cell regulatory systems
underlying phenotype switching and cell determination
(Veening et al., 2008). Hysteresis ensures a reliable cell
decision in response to stimuli, as it enables the acquired
phenotype to persist long upon withdrawal of the signal
(Celià-Terrassa et al., 2018). In this context, both re-
versible and irreversible scenarios (Xiong and Ferrell, 2012;
Wang et al., 2009; Ferrell, 2012; Wu et al., 2013) have been
experimentally observed (reversibility must be understood
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here as the capacity of individual cells to switch back in
absence of external signals (Gupta et al., 2011)).

The dynamics of a gene regulatory network (GRN) is
inherently stochastic, being the time evolution of the
probability distribution of the system state governed by
a Chemical Master Equation (CME). The steady state
solution of the CME is unique, and therefore independent
on the initial state of the system (Van Kampen, 2007).
Therefore, stochastic gene regulatory processes are in
principle incompatible with memory effects or hysteresis.
However, in numerous studies, hysteresis has been found
in gene regulatory networks subject to significant levels of
stochasticity (Ozbudak et al., 2008; Thomas et al., 2014;
Gnügge et al., 2016; Hsu et al., 2016).

Pájaro et al. (2019) resolved this apparent discrepancy
demonstrating that, for stochastic gene regulatory net-
works, hysteresis and irreversibility at the single cell level
are transient effects that vanish at the steady state. To
this aim, the authors computed the convergence rates
of an accurate approximation of the CME by a Partial-
Integro Differential Equation (PIDE) (Friedman et al.,
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Pájaro et al. (2019) resolved this apparent discrepancy
demonstrating that, for stochastic gene regulatory net-
works, hysteresis and irreversibility at the single cell level
are transient effects that vanish at the steady state. To
this aim, the authors computed the convergence rates
of an accurate approximation of the CME by a Partial-
Integro Differential Equation (PIDE) (Friedman et al.,

First passage times as a measure of
hysteresis in stochastic gene regulatory

circuits ⋆
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namics. It occurs when a graded stimulus produces a
discontinuous (ON-OFF) response in the measured steady
state of the system upon a given threshold and, in addition,
the system switches on and off for two different thresholds
of the signal. In this way, the system’s steady state follows
a different path depending on whether the input signal is
increasing or decreasing. This type of ON-OFF response
is a widespread mechanism in cell regulatory systems
underlying phenotype switching and cell determination
(Veening et al., 2008). Hysteresis ensures a reliable cell
decision in response to stimuli, as it enables the acquired
phenotype to persist long upon withdrawal of the signal
(Celià-Terrassa et al., 2018). In this context, both re-
versible and irreversible scenarios (Xiong and Ferrell, 2012;
Wang et al., 2009; Ferrell, 2012; Wu et al., 2013) have been
experimentally observed (reversibility must be understood
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here as the capacity of individual cells to switch back in
absence of external signals (Gupta et al., 2011)).

The dynamics of a gene regulatory network (GRN) is
inherently stochastic, being the time evolution of the
probability distribution of the system state governed by
a Chemical Master Equation (CME). The steady state
solution of the CME is unique, and therefore independent
on the initial state of the system (Van Kampen, 2007).
Therefore, stochastic gene regulatory processes are in
principle incompatible with memory effects or hysteresis.
However, in numerous studies, hysteresis has been found
in gene regulatory networks subject to significant levels of
stochasticity (Ozbudak et al., 2008; Thomas et al., 2014;
Gnügge et al., 2016; Hsu et al., 2016).

Pájaro et al. (2019) resolved this apparent discrepancy
demonstrating that, for stochastic gene regulatory net-
works, hysteresis and irreversibility at the single cell level
are transient effects that vanish at the steady state. To
this aim, the authors computed the convergence rates
of an accurate approximation of the CME by a Partial-
Integro Differential Equation (PIDE) (Friedman et al.,

2006; Pájaro et al., 2017), for which the stationary solution
is also unique Cañizo et al. (2019).

In this work, we obtain and exploit the First Passage
Times of proteins to quantify the robustness of the hystere-
sis effect. First Passage Times (FPT) also called hitting or
escape times of proteins in gene regulatory circuits are
defined as the times taken by a protein to reach some
threshold or leave some region starting from a given initial
state. In the literature, FPT have been used for example
to explore the robustness of cellular memory or division
(Cheng et al., 2008; Charlebois et al., 2011), the switching
times between the two stable states (Zheng et al., 2011;
Wang and Yang, 2016), the randomness on the timing of
events (lytic pathway of the bacterial virus phage λ) Singh
and Dennehy (2014), or to reduce the FPT noise Ghusinga
et al. (2017).

Here, we derive the backward master equation with jump
processes for gene self regulated networks to obtain the
FPT distributions. We compute the mean FPT that is
needed to attain the mean of the stationary protein distri-
bution (given by the forward PIDE steady state solution)
starting in absence of proteins. We show how the inverse
of these times are in agreement with the convergence rates
obtained by Pájaro et al. (2019) to measure the hysteresis
strength. Moreover, hysteretic behaviour is more robust as
the mean FPT to switch between the two most probable
states increases.

In addition, we provide a theoretical basis to explain coex-
istence of different phenotypes, each of them characterized
by a high probability region separated from neighbour-
ing phenotypes by low probability barriers. Since we are
far away from a thermodynamic limit, a potential-like
characterization of phenotypes -the so-called Waddington
landscape (see for instance Ferrell, 2012) - can be mislead-
ing as it suggests that under noise, some phenotypes are
abandoned against others. Alternatively, we propose the
use of the CME to construct a time evolving landscape in
which phenotypes coexist rather than prevail at different
levels of persistence.

2. METHODS

2.1 Model structure and assumptions

Let us consider the transcription-translation mechanism
expressing a protein X depicted in Fig. 1. Transitions
between inactive to active states (DNAoff and DNAon, re-
spectively) are regulated by a positive feedback mechanism
which involves the binding of a given (positive) number
−H of protein molecules, and takes the form:

c(x) = (1− ρ(x)) + ρ(x)ε, (1)

where ρ(x) is a Hill function that describes the ratio of
promoter in the inactive form as a function of the number
of proteins x:

ρ(x) =
1

1 +
(

x
K

)−H
. (2)

with K = kon

koff
being the equilibrium binding constant

and ε a small constant, typically much smaller than
unity, which describes basal transcription (or leakage).
Transcription and translation occur at rates km and kx
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Fig. 1. Schematic diagram of a simple self-regulated pro-
tein expression network.The gene promoter is as-
sumed to switch between an active and an inactive
state denoted by DNAon and DNAoff at frequencies
kon and koff , respectively. Activation is exerted by a
positive feed-back loop which consists of the binding
of the expressed protein X. The loop is closed by a
DNA to messenger RNA (mRNA) transcription and
translation from mRNA to protein.

per unit time, whereas γm and γx are degradation rate
constants of mRNA and protein, respectively.

Assuming that mRNA degrades faster than protein X as
it is the case in most prokaryotic and eukaryote organisms
(Dar et al., 2012), proteins are produced in bursts (Fried-
man et al., 2006; Ochab-Marcinek and Tabaka, 2015) at a
frequency a = km/γx.

2.2 The forward Friedman equation

Under the previous assumption, let p(x, t;x′, t′) be the
probability of being in x at time t conditioned to be in
x′ at t′ ≤ t (in what follows, t and t′ are dimension-
less). Then we have that p(x, t;x′, t′) satisfies a Partial
Integro-Differential Equation (PIDE) (Friedman et al.,
2006; Pájaro et al., 2015) denoted here as forward Fried-
man equation. This equation is written only in terms of
the variables t and x (t′ and x′ act as parameters) and
takes the form:

∂p(t, x)

∂t
− ∂[xp(t, x)]

∂x
=

−ac(x)p(t, x) + a

∫ x

0

dy ω(x− y)c(y)p(t, y), (3)

where ω(x − y) represents the conditional probability for
protein number to jump from a state y to an upper state
x after a burst of size b = kx/γm, as follows:

ω(x− y) =
1

b
exp

[
−(x− y)

b

]
. (4)

The solution of Eqn (3) requires as initial condition
some initial probability distribution, typically of the form
p(x, 0) = δ(x− x0). In addition, we have that:∫ ∞

0

dx p(x, t;x0, 0) = 1, (5)

where the equality must be satisfied for every positive
time. The stationary solution of Eqn (3) is given by:

P (x) = Z
(
KH + xH

) a(ε−1)
H xa−1e

−x
b , (6)

with Z being the integration constant that normalizes the
probability density function,

∫∞
0

P (x) dx = 1, and the

parameters H, K, ε, a = km

γx
and b = kx

γm
being as in
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2006; Pájaro et al., 2017), for which the stationary solution
is also unique Cañizo et al. (2019).

In this work, we obtain and exploit the First Passage
Times of proteins to quantify the robustness of the hystere-
sis effect. First Passage Times (FPT) also called hitting or
escape times of proteins in gene regulatory circuits are
defined as the times taken by a protein to reach some
threshold or leave some region starting from a given initial
state. In the literature, FPT have been used for example
to explore the robustness of cellular memory or division
(Cheng et al., 2008; Charlebois et al., 2011), the switching
times between the two stable states (Zheng et al., 2011;
Wang and Yang, 2016), the randomness on the timing of
events (lytic pathway of the bacterial virus phage λ) Singh
and Dennehy (2014), or to reduce the FPT noise Ghusinga
et al. (2017).

Here, we derive the backward master equation with jump
processes for gene self regulated networks to obtain the
FPT distributions. We compute the mean FPT that is
needed to attain the mean of the stationary protein distri-
bution (given by the forward PIDE steady state solution)
starting in absence of proteins. We show how the inverse
of these times are in agreement with the convergence rates
obtained by Pájaro et al. (2019) to measure the hysteresis
strength. Moreover, hysteretic behaviour is more robust as
the mean FPT to switch between the two most probable
states increases.

In addition, we provide a theoretical basis to explain coex-
istence of different phenotypes, each of them characterized
by a high probability region separated from neighbour-
ing phenotypes by low probability barriers. Since we are
far away from a thermodynamic limit, a potential-like
characterization of phenotypes -the so-called Waddington
landscape (see for instance Ferrell, 2012) - can be mislead-
ing as it suggests that under noise, some phenotypes are
abandoned against others. Alternatively, we propose the
use of the CME to construct a time evolving landscape in
which phenotypes coexist rather than prevail at different
levels of persistence.

2. METHODS

2.1 Model structure and assumptions

Let us consider the transcription-translation mechanism
expressing a protein X depicted in Fig. 1. Transitions
between inactive to active states (DNAoff and DNAon, re-
spectively) are regulated by a positive feedback mechanism
which involves the binding of a given (positive) number
−H of protein molecules, and takes the form:

c(x) = (1− ρ(x)) + ρ(x)ε, (1)

where ρ(x) is a Hill function that describes the ratio of
promoter in the inactive form as a function of the number
of proteins x:

ρ(x) =
1

1 +
(
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)−H
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with K = kon
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being the equilibrium binding constant

and ε a small constant, typically much smaller than
unity, which describes basal transcription (or leakage).
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Fig. 1. Schematic diagram of a simple self-regulated pro-
tein expression network.The gene promoter is as-
sumed to switch between an active and an inactive
state denoted by DNAon and DNAoff at frequencies
kon and koff , respectively. Activation is exerted by a
positive feed-back loop which consists of the binding
of the expressed protein X. The loop is closed by a
DNA to messenger RNA (mRNA) transcription and
translation from mRNA to protein.

per unit time, whereas γm and γx are degradation rate
constants of mRNA and protein, respectively.

Assuming that mRNA degrades faster than protein X as
it is the case in most prokaryotic and eukaryote organisms
(Dar et al., 2012), proteins are produced in bursts (Fried-
man et al., 2006; Ochab-Marcinek and Tabaka, 2015) at a
frequency a = km/γx.

2.2 The forward Friedman equation

Under the previous assumption, let p(x, t;x′, t′) be the
probability of being in x at time t conditioned to be in
x′ at t′ ≤ t (in what follows, t and t′ are dimension-
less). Then we have that p(x, t;x′, t′) satisfies a Partial
Integro-Differential Equation (PIDE) (Friedman et al.,
2006; Pájaro et al., 2015) denoted here as forward Fried-
man equation. This equation is written only in terms of
the variables t and x (t′ and x′ act as parameters) and
takes the form:

∂p(t, x)

∂t
− ∂[xp(t, x)]

∂x
=

−ac(x)p(t, x) + a

∫ x

0

dy ω(x− y)c(y)p(t, y), (3)

where ω(x − y) represents the conditional probability for
protein number to jump from a state y to an upper state
x after a burst of size b = kx/γm, as follows:

ω(x− y) =
1

b
exp

[
−(x− y)

b

]
. (4)

The solution of Eqn (3) requires as initial condition
some initial probability distribution, typically of the form
p(x, 0) = δ(x− x0). In addition, we have that:∫ ∞

0

dx p(x, t;x0, 0) = 1, (5)

where the equality must be satisfied for every positive
time. The stationary solution of Eqn (3) is given by:

P (x) = Z
(
KH + xH

) a(ε−1)
H xa−1e

−x
b , (6)

with Z being the integration constant that normalizes the
probability density function,

∫∞
0

P (x) dx = 1, and the

parameters H, K, ε, a = km
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and b = kx
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being as in
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Fig. 2. Jump process representation of one protein pro-
duced in bursts, where one state x can be reached
from lower states 0 ≤ y < x with different transition
probability functions gxy . Equivalently, from the state
x the protein number can jump to higher states y with
transition probability function gyx. The degradation
follows a one step process (i. e. from state x to state
x−1). The reactions highlighted in green, are the ones
that appear in the First Passage Time (FPT) formula.

Eqn (3). Moreover, the dynamics of Eqn (3) are obtained
by a semi-Lagrangian method (Pájaro et al. (2017)),
implemented in the freely available toolbox SELANSI
(Pájaro et al., 2018).

We can interpret the solution of Eqn (3) as a time
evolving landscape with local maxima representing the
set of coexisting phenotypes within a given isogenic cell
population, and very unlikely cell states lying at the
transition regions between most feasible phenotypes.

2.3 Backward master equations

In order to know for how long a particular phenotype can
persist, we will be interested in computing first passage
time distributions (e.g. Gardiner, 2009) associated to some
given phenotype passing through a transition region char-
acterized by a protein amount xf . Such distributions can
be obtained as follows:

T (t) =
q(xf , t;x0, 0) T

0
ds q(xf , s;x0, 0)

(7)

where T is chosen to be large enough, and q(x′, t′;x, t)
(with t′ ≥ t) is a probability distribution function in
x′, that defines the probability of some given protein
amount x′ being produced in the future t′, conditioned
to a continuous set of possible values x produced in a
given present t. Note that both x and x′ lie within an
interval (L,U) within the set of natural numbers. Moreover
x, x′ ∈ (L,U).

We make use of the Chapman-Kolmogorov relation (see
e.g. Gardiner (2009)) associated to our system, depicted
in Figure 2, to compute the conditional probability
q(x′, t′;x, t) as t → 0. For every x = L, · · · , U we have:

q(x′, t′;x, t) = q(x′, t′;x− 1, t+ δs)γxxδs

+
∞

y=x+1

q(x′, t′; y, t+ δs)gyxδs

+ q(x′, t′;x, t)


1− γxxδs−

∞
y=x+1

gyxδs



(8)

with,

gyx =
a

b
c(x)e

x−y
b . (9)

Re-ordering terms in the above equation (8) and dividing
by δs we get the equivalent expression:

q(x′, t′;x, t)− q(x′, t′;x, t+ δs)

δs
=

q(x′, t′;x− 1, t+ δs)γxx+

∞
y=x+1

q(x′, t′; y, t+ δs)gyx

−q(x′, t′;x, t+ δs)


γxx+

∞
y=x+1

gyx



(10)

In the limit as δs → 0, the left hand term of the above
expression becomes a time derivative, leading to a set
of ordinary differential equations (ODEs) for every x =
L,L+ 1, · · · , U , of the form:

−qt(x
′, t′;x, t) = q(x′, t′;x− 1, t)γxx

+
∞

y=x+1

q(x′, t′; y, t)gyx

− q(x′, t′;x, t)


γxx+

∞
y=x+1

gyx


. (11)

The last equation requires to be solved a final condition
q(x′, t′;x, t′) = f(x′), for every x(= x′) = L, · · · , U , and:

U
x=L

f(x) = 1.

In what follows, we omit the explicit final condition in
q considering that q(x, t) ≡ q(x′, t′;x, t). The final value
problem just stated can be transformed into an equivalent
initial value problem by using a new time variable τ = t′−
t, for t′ large enough. Note that q(x, τ) = q(x, t) and
qτ (x, τ) = −qt(x, t), and therefore from Eqn (11) we
obtain:

qτ (x, τ) = γxxq(x− 1, τ) +

∞
y=x+1

gyxq(y, τ)

−


γxx+

∞
y=x+1

gyx


q(x, τ), (12)

which can be written in matrix notation as:

qτ = Fq, (13)

where q ∈ Rn (with n = U−L+1) is a vector with elements
being the values of q(x, t) for each x = L,L+1, · · · , U , such

that q = [q(L, t), · · · , q(U, t)]T , and the matrix F ∈ Rn×n

in (13) reads:

F =




−dL gL+1
L gL+2

L · · · gU−2
L gU−1

L gUL

L+ 1 −dL+1 gL+2
L+1 · · · gU−2

L+1 gU−1
L+1 gUL+1

0 L+ 2 −dL+2 gU−2
L+2 gU−1

L+2 gUL+2

...
. . .

. . .
...

...

0 0 0 −dU−2 gU−1
U−2 gUU−2

0 0 0 U − 1 −dU−1 gUU−1

0 0 0 · · · 0 U −dU




.

(14)
The elements of the diagonal di are of the form:

dL =

∞∑
i=L+1

giL =
a

b

c(L)

e
1
b − 1

, (15)

and

dn = n+

∞∑
i=n+1

gin = n+
a

b

c(n)

e
1
b − 1

, (16)

for n = L + 1, L + 2, . . . , U . The set of ODEs in (13) is
solved directly using matrix exponentiation in MATLAB.
Note that F is equivalent to the transpose of the matrix
associated to the forward PIDE, MT , see Pájaro et al.
(2019). The only difference between both matrices appears
in the diagonal terms which have been truncated for the
forward problem, whereas for the backward one, infinite
jump terms were considered.

Moreover, from Eqn (11) we can obtain its continuous
counterpart, denoted here as backwards in time PIDE,
which reads:

∂q(x, t)

∂t
− x

∂[q(x, t)]

∂x
=

+ac(x)q(x, t)− ac(x)

∫ ∞

x

dy ω(x− y)q(y, t).(17)

The above backwards in time PIDE must satisfy a final
value condition of the form q(xf , T ) = δ(x − xf ) that
represents some certainty of being in xf in the future. Eqn
(17) can be solved by a semi-Lagrangian method (Pájaro
et al. (2018)) in the same way as Eqn (3), transforming the
backward Friedman equation into an initial value problem
by reverting time such that τ = T − t.

The mean FPT, ⟨T ⟩ is obtained by computing the mean
of the FPT distributions, T (t) in Eqn 8. The mean FPT
of going from zero proteins to a certain positive threshold,
xf , can be also computed as the mean FPT of exit from
the region [0, xf ]. Note that, zero is a natural boundary of
the system (we cannot have negative amounts of proteins),
so that, xf is the unique point to escape from the region.
Following Van Kampen (2007), the mean FPT of exit from
one region is defined as:

T (x) =dt+ dt
∞∑

i=x+1

gixT (i) + dtxT (x− 1)

+ T (x)

(
1− dtx− dt

∞∑
i=x+1

gix

)
. (18)

Considering the limit dt → 0, the above expression takes
the following form:

−1 =

∞∑
i=x+1

gixT (i) + xT (x− 1)−

(
x+

∞∑
i=x+1

gix

)
T (x).

(19)
Note that, Eqn (19) can be also written in matrix notation
as:

−1 = FT , (20)

where T ∈ Rn (with n = U − L + 1) is a vector with
elements being the values of T (x) for each x = L,L +
1, · · · , U , and F as defined in (14). Eqn (20) can be directly
solved by computing the matrix inverse, T = −F−11.
Thus the mean FPT for reach U proteins from zero is
⟨T ⟩ = T (1).

3. RESULTS AND DISCUSSION

As discussed in the introduction, despite the number of
experimental and theoretical works supporting evidence
of hysteresis in GRN, such phenomenon is not compatible
with the stochasticity underlying gene regulatory networks
dynamics. At least, not in the conditions that typically
characterize hysteresis in systems operating in the ther-
modynamic/deterministic limit. It is a well known fact
that any CME (Chemical Master Equation) has a unique
(and stable) equilibrium solution (Van Kampen, 2007).
According to Cañizo et al. (2019), this is the case also
for the PIDE approximation of the CME in Eqn (3).

In a previous work (Pájaro et al., 2019) we found that
within slow transients of Eqn (3), mean protein values re-
late to kinetic parameters by a typical hysteresis pattern as
the one depicted in Figure 3 A as a function of parameter b.
As the transient distributions starting from different initial
conditions approach the steady state, hysteresis shrinks to
actually collapse into the mean values of the steady state
distribution (black line in Figure 3 A). Here we show how
through the FPT derived in the Methods section, we can
quantify the robustness of the hysteresis effect.

As in Pájaro et al. (2019), we compute the convergence
rate, η, of the PIDE model, Eqn (3), for different initial
conditions (blue and red lines in Figure 3 B) and the
eigenvalue with smallest absolute value of M associated to
Eqn (3), λ1, (black line in Figure 3 B). In addition, we plot
the mean FPT to reach the mean protein level (obtained
from the analytical expression (6)) starting from zero. The
inverse of that mean FPT is shown in Figure 3 B (magenta
dashed line), which follows the same trajectory than the
convergence rate obtained for initial condition close to zero
(a normal distribution centered at 1, N (1, 0.1)). Higher
values of the mean FPT are obtained for b parameters for
which the hysteresis behaviour is more persistent.

Regions in the a-b parameter space leading to bimodal
distributions Pájaro et al. (2015), coincide with those for
which Eqn (3) evolves slowly and the mean FPT is higher.
Figure 3 C depicts one such region characterized by the
mean FPT, ⟨T ⟩, to reach the mean protein amount from
zero computed using expression (20) (in the figure the
logarithm is plotted).

Typical (bimodal) stationary distributions are presented
in Figure 4 A. Extremal values of bimodal distributions
are often related to multiple equilibria of the correspond-
ing deterministic description, being the maxima and the
minimum associated to stable and unstable equilibria,
respectively. Unfortunately, this correspondence fails in
many occasions, so that bimodal distributions associated
to a mesoscopic description do not necessarily coincide
with bistable states of the deterministic counterpart, or
the other way around Pájaro et al. (2015). This calls
for a mesoscopic (CME-type) framework to be the more
adequate and natural representation of the gene regulatory
phenomena.

In this context, the number of possible phenotypes that
can be reached by a cell should equal the number of max-
ima in p(x, t), each of them is characterized by a high prob-
ability region separated from neighbouring phenotypes by
low probability barriers. Since the systems under study
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associated to the forward PIDE, MT , see Pájaro et al.
(2019). The only difference between both matrices appears
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represents some certainty of being in xf in the future. Eqn
(17) can be solved by a semi-Lagrangian method (Pájaro
et al. (2018)) in the same way as Eqn (3), transforming the
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The mean FPT, ⟨T ⟩ is obtained by computing the mean
of the FPT distributions, T (t) in Eqn 8. The mean FPT
of going from zero proteins to a certain positive threshold,
xf , can be also computed as the mean FPT of exit from
the region [0, xf ]. Note that, zero is a natural boundary of
the system (we cannot have negative amounts of proteins),
so that, xf is the unique point to escape from the region.
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one region is defined as:
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elements being the values of T (x) for each x = L,L +
1, · · · , U , and F as defined in (14). Eqn (20) can be directly
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Thus the mean FPT for reach U proteins from zero is
⟨T ⟩ = T (1).
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As discussed in the introduction, despite the number of
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of hysteresis in GRN, such phenomenon is not compatible
with the stochasticity underlying gene regulatory networks
dynamics. At least, not in the conditions that typically
characterize hysteresis in systems operating in the ther-
modynamic/deterministic limit. It is a well known fact
that any CME (Chemical Master Equation) has a unique
(and stable) equilibrium solution (Van Kampen, 2007).
According to Cañizo et al. (2019), this is the case also
for the PIDE approximation of the CME in Eqn (3).

In a previous work (Pájaro et al., 2019) we found that
within slow transients of Eqn (3), mean protein values re-
late to kinetic parameters by a typical hysteresis pattern as
the one depicted in Figure 3 A as a function of parameter b.
As the transient distributions starting from different initial
conditions approach the steady state, hysteresis shrinks to
actually collapse into the mean values of the steady state
distribution (black line in Figure 3 A). Here we show how
through the FPT derived in the Methods section, we can
quantify the robustness of the hysteresis effect.

As in Pájaro et al. (2019), we compute the convergence
rate, η, of the PIDE model, Eqn (3), for different initial
conditions (blue and red lines in Figure 3 B) and the
eigenvalue with smallest absolute value of M associated to
Eqn (3), λ1, (black line in Figure 3 B). In addition, we plot
the mean FPT to reach the mean protein level (obtained
from the analytical expression (6)) starting from zero. The
inverse of that mean FPT is shown in Figure 3 B (magenta
dashed line), which follows the same trajectory than the
convergence rate obtained for initial condition close to zero
(a normal distribution centered at 1, N (1, 0.1)). Higher
values of the mean FPT are obtained for b parameters for
which the hysteresis behaviour is more persistent.

Regions in the a-b parameter space leading to bimodal
distributions Pájaro et al. (2015), coincide with those for
which Eqn (3) evolves slowly and the mean FPT is higher.
Figure 3 C depicts one such region characterized by the
mean FPT, ⟨T ⟩, to reach the mean protein amount from
zero computed using expression (20) (in the figure the
logarithm is plotted).

Typical (bimodal) stationary distributions are presented
in Figure 4 A. Extremal values of bimodal distributions
are often related to multiple equilibria of the correspond-
ing deterministic description, being the maxima and the
minimum associated to stable and unstable equilibria,
respectively. Unfortunately, this correspondence fails in
many occasions, so that bimodal distributions associated
to a mesoscopic description do not necessarily coincide
with bistable states of the deterministic counterpart, or
the other way around Pájaro et al. (2015). This calls
for a mesoscopic (CME-type) framework to be the more
adequate and natural representation of the gene regulatory
phenomena.

In this context, the number of possible phenotypes that
can be reached by a cell should equal the number of max-
ima in p(x, t), each of them is characterized by a high prob-
ability region separated from neighbouring phenotypes by
low probability barriers. Since the systems under study
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Fig. 3. Transient hysteresis in a self-regulating network
with H = −7, K = 100. Plot (A) compares mean
values of x obtained from different initial conditions
p0 at t = 100 (dimensionless time units) with the
values obtained for the stationary distribution, for
different b values. Parameter a = 27. Plot (B) shows
the convergence rates, η of Eqn (3) for different
initial conditions, the slowest (negative) eigenvalue
associated to Eqn (3) and the mean FPT to reach the
mean protein amount from zero. Plot (C) represents
mean FPT to reach the mean protein amount from
zero as a function of the burst frequency and size, a
and b parameters, respectively.
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Fig. 4. A positive self-regulating network with K = 100
and a = 27. (A) represents stationary distributions for
b = 10, H = −7 (blue line) and b = 9, H = −2 (red
line). (B) and (C) are first passage time distributions
for the low protein expression phenotype, computed
from Eqn (7) for the cases shown above. (B) distribu-
tion for b = 10, H = −7, (C) distribution for b = 9,
H = −2.

are far from the thermodynamic limit, we make use of
the CME (in our case approximated through the forward
Friedman Eqn (3)) to provide a description based on a time
evolving landscape where phenotypes can coexist, being
more or less persistent, rather than stable or unstable.

Figure 4 B-C depicts the first passage time distributions
computed from (7) and (13). Comparing both distribu-
tions with those of Figure 4 A, the less probable the sep-
aration between phenotypes, the longer the first passage
times. In agreement with this observation, the slower the
forward Friedman equation as well, even to the point of
such solution being confounded by a stationary one.

The above results suggests the use of the mean first
passage times (or first passage time distributions) as a
measure of phenotype persistency, a concept that would
substitute the notion of stability, more appropriate for
deterministic systems governed by a potential.
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ponential equilibration of genetic circuits using entropy
methods. J. Math. Biol., 78, 373–411.
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computed from (7) and (13). Comparing both distribu-
tions with those of Figure 4 A, the less probable the sep-
aration between phenotypes, the longer the first passage
times. In agreement with this observation, the slower the
forward Friedman equation as well, even to the point of
such solution being confounded by a stationary one.

The above results suggests the use of the mean first
passage times (or first passage time distributions) as a
measure of phenotype persistency, a concept that would
substitute the notion of stability, more appropriate for
deterministic systems governed by a potential.
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