Deep Learning Techniques for Automated Analysis and Processing of High Resolution Medical Imaging

Use this link to cite
http://hdl.handle.net/2183/29884
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 4.0 Internacional
Collections
- Teses de doutoramento [2221]
Metadata
Show full item recordTitle
Deep Learning Techniques for Automated Analysis and Processing of High Resolution Medical ImagingAuthor(s)
Directors
Novo Buján, JorgeRouco, J.
Date
2022Abstract
[Abstract]
Medical imaging plays a prominent role in modern clinical practice for numerous
medical specialties. For instance, in ophthalmology, different imaging techniques are
commonly used to visualize and study the eye fundus. In this context, automated
image analysis methods are key towards facilitating the early diagnosis and adequate
treatment of several diseases. Nowadays, deep learning algorithms have already
demonstrated a remarkable performance for different image analysis tasks. However,
these approaches typically require large amounts of annotated data for the training
of deep neural networks. This complicates the adoption of deep learning approaches,
especially in areas where large scale annotated datasets are harder to obtain, such
as in medical imaging.
This thesis aims to explore novel approaches for the automated analysis of medical
images, particularly in ophthalmology. In this regard, the main focus is on
the development of novel deep learning-based approaches that do not require large
amounts of annotated training data and can be applied to high resolution images.
For that purpose, we have presented a novel paradigm that allows to take advantage
of unlabeled complementary image modalities for the training of deep neural
networks. Additionally, we have also developed novel approaches for the detailed
analysis of eye fundus images. In that regard, this thesis explores the analysis of
relevant retinal structures as well as the diagnosis of different retinal diseases. In
general, the developed algorithms provide satisfactory results for the analysis of the
eye fundus, even when limited annotated training data is available. [Resumen]
Las técnicas de imagen tienen un papel destacado en la práctica clínica moderna
de numerosas especialidades médicas. Por ejemplo, en oftalmología es común el uso
de diferentes técnicas de imagen para visualizar y estudiar el fondo de ojo. En este
contexto, los métodos automáticos de análisis de imagen son clave para facilitar
el diagnóstico precoz y el tratamiento adecuado de diversas enfermedades. En la
actualidad, los algoritmos de aprendizaje profundo ya han demostrado un notable
rendimiento en diferentes tareas de análisis de imagen. Sin embargo, estos métodos
suelen necesitar grandes cantidades de datos etiquetados para el entrenamiento de
las redes neuronales profundas. Esto complica la adopción de los métodos de aprendizaje
profundo, especialmente en áreas donde los conjuntos masivos de datos etiquetados
son más difíciles de obtener, como es el caso de la imagen médica.
Esta tesis tiene como objetivo explorar nuevos métodos para el análisis automático de imagen médica, concretamente en oftalmología. En este sentido, el foco
principal es el desarrollo de nuevos métodos basados en aprendizaje profundo que no
requieran grandes cantidades de datos etiquetados para el entrenamiento y puedan
aplicarse a imágenes de alta resolución. Para ello, hemos presentado un nuevo
paradigma que permite aprovechar modalidades de imagen complementarias no etiquetadas
para el entrenamiento de redes neuronales profundas. Además, también
hemos desarrollado nuevos métodos para el análisis en detalle de las imágenes del
fondo de ojo. En este sentido, esta tesis explora el análisis de estructuras retinianas
relevantes, así como el diagnóstico de diferentes enfermedades de la retina. En
general, los algoritmos desarrollados proporcionan resultados satisfactorios para el
análisis de las imágenes de fondo de ojo, incluso cuando la disponibilidad de datos
de entrenamiento etiquetados es limitada. [Resumo]
As técnicas de imaxe teñen un papel destacado na práctica clínica moderna de
numerosas especialidades médicas. Por exemplo, en oftalmoloxía é común o uso
de diferentes técnicas de imaxe para visualizar e estudar o fondo de ollo. Neste
contexto, os métodos automáticos de análises de imaxe son clave para facilitar o
diagn ostico precoz e o tratamento adecuado de diversas enfermidades. Na actualidade,
os algoritmos de aprendizaxe profunda xa demostraron un notable rendemento
en diferentes tarefas de análises de imaxe. Con todo, estes métodos adoitan necesitar
grandes cantidades de datos etiquetos para o adestramento das redes neuronais
profundas. Isto complica a adopción dos métodos de aprendizaxe profunda, especialmente
en áreas onde os conxuntos masivos de datos etiquetados son máis difíciles
de obter, como é o caso da imaxe médica.
Esta tese ten como obxectivo explorar novos métodos para a análise automática
de imaxe médica, concretamente en oftalmoloxía. Neste sentido, o foco principal
é o desenvolvemento de novos métodos baseados en aprendizaxe profunda que non
requiran grandes cantidades de datos etiquetados para o adestramento e poidan aplicarse
a imaxes de alta resolución. Para iso, presentamos un novo paradigma que
permite aproveitar modalidades de imaxe complementarias non etiquetadas para o
adestramento de redes neuronais profundas. Ademais, tamén desenvolvemos novos
métodos para a análise en detalle das imaxes do fondo de ollo. Neste sentido, esta
tese explora a análise de estruturas retinianas relevantes, así como o diagnóstico de
diferentes enfermidades da retina. En xeral, os algoritmos desenvolvidos proporcionan
resultados satisfactorios para a análise das imaxes de fondo de ollo, mesmo
cando a dispoñibilidade de datos de adestramento etiquetados é limitada.
Keywords
Diagnóstico por imagen
Oftalmología-Informática
Tratamiento de imágenes en medicina
Oftalmología-Informática
Tratamiento de imágenes en medicina
Rights
Atribución-NoComercial-SinDerivadas 4.0 Internacional