Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Escola Internacional de Doutoramento (EIDUDC)
  • Teses de doutoramento
  • Ver ítem
  •   RUC
  • Escola Internacional de Doutoramento (EIDUDC)
  • Teses de doutoramento
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep Learning Techniques for Automated Analysis and Processing of High Resolution Medical Imaging

Thumbnail
Ver/abrir
SuarezHervella_Alvaro_TD_2022.pdf (13.88Mb)
Use este enlace para citar
http://hdl.handle.net/2183/29884
Atribución-NoComercial-SinDerivadas 4.0 Internacional
A non ser que se indique outra cousa, a licenza do ítem descríbese como Atribución-NoComercial-SinDerivadas 4.0 Internacional
Coleccións
  • Teses de doutoramento [2227]
Metadatos
Mostrar o rexistro completo do ítem
Título
Deep Learning Techniques for Automated Analysis and Processing of High Resolution Medical Imaging
Autor(es)
Hervella, Álvaro S.
Director(es)
Novo Buján, Jorge
Rouco, J.
Data
2022
Resumo
[Abstract] Medical imaging plays a prominent role in modern clinical practice for numerous medical specialties. For instance, in ophthalmology, different imaging techniques are commonly used to visualize and study the eye fundus. In this context, automated image analysis methods are key towards facilitating the early diagnosis and adequate treatment of several diseases. Nowadays, deep learning algorithms have already demonstrated a remarkable performance for different image analysis tasks. However, these approaches typically require large amounts of annotated data for the training of deep neural networks. This complicates the adoption of deep learning approaches, especially in areas where large scale annotated datasets are harder to obtain, such as in medical imaging. This thesis aims to explore novel approaches for the automated analysis of medical images, particularly in ophthalmology. In this regard, the main focus is on the development of novel deep learning-based approaches that do not require large amounts of annotated training data and can be applied to high resolution images. For that purpose, we have presented a novel paradigm that allows to take advantage of unlabeled complementary image modalities for the training of deep neural networks. Additionally, we have also developed novel approaches for the detailed analysis of eye fundus images. In that regard, this thesis explores the analysis of relevant retinal structures as well as the diagnosis of different retinal diseases. In general, the developed algorithms provide satisfactory results for the analysis of the eye fundus, even when limited annotated training data is available.
 
[Resumen] Las técnicas de imagen tienen un papel destacado en la práctica clínica moderna de numerosas especialidades médicas. Por ejemplo, en oftalmología es común el uso de diferentes técnicas de imagen para visualizar y estudiar el fondo de ojo. En este contexto, los métodos automáticos de análisis de imagen son clave para facilitar el diagnóstico precoz y el tratamiento adecuado de diversas enfermedades. En la actualidad, los algoritmos de aprendizaje profundo ya han demostrado un notable rendimiento en diferentes tareas de análisis de imagen. Sin embargo, estos métodos suelen necesitar grandes cantidades de datos etiquetados para el entrenamiento de las redes neuronales profundas. Esto complica la adopción de los métodos de aprendizaje profundo, especialmente en áreas donde los conjuntos masivos de datos etiquetados son más difíciles de obtener, como es el caso de la imagen médica. Esta tesis tiene como objetivo explorar nuevos métodos para el análisis automático de imagen médica, concretamente en oftalmología. En este sentido, el foco principal es el desarrollo de nuevos métodos basados en aprendizaje profundo que no requieran grandes cantidades de datos etiquetados para el entrenamiento y puedan aplicarse a imágenes de alta resolución. Para ello, hemos presentado un nuevo paradigma que permite aprovechar modalidades de imagen complementarias no etiquetadas para el entrenamiento de redes neuronales profundas. Además, también hemos desarrollado nuevos métodos para el análisis en detalle de las imágenes del fondo de ojo. En este sentido, esta tesis explora el análisis de estructuras retinianas relevantes, así como el diagnóstico de diferentes enfermedades de la retina. En general, los algoritmos desarrollados proporcionan resultados satisfactorios para el análisis de las imágenes de fondo de ojo, incluso cuando la disponibilidad de datos de entrenamiento etiquetados es limitada.
 
[Resumo] As técnicas de imaxe teñen un papel destacado na práctica clínica moderna de numerosas especialidades médicas. Por exemplo, en oftalmoloxía é común o uso de diferentes técnicas de imaxe para visualizar e estudar o fondo de ollo. Neste contexto, os métodos automáticos de análises de imaxe son clave para facilitar o diagn ostico precoz e o tratamento adecuado de diversas enfermidades. Na actualidade, os algoritmos de aprendizaxe profunda xa demostraron un notable rendemento en diferentes tarefas de análises de imaxe. Con todo, estes métodos adoitan necesitar grandes cantidades de datos etiquetos para o adestramento das redes neuronais profundas. Isto complica a adopción dos métodos de aprendizaxe profunda, especialmente en áreas onde os conxuntos masivos de datos etiquetados son máis difíciles de obter, como é o caso da imaxe médica. Esta tese ten como obxectivo explorar novos métodos para a análise automática de imaxe médica, concretamente en oftalmoloxía. Neste sentido, o foco principal é o desenvolvemento de novos métodos baseados en aprendizaxe profunda que non requiran grandes cantidades de datos etiquetados para o adestramento e poidan aplicarse a imaxes de alta resolución. Para iso, presentamos un novo paradigma que permite aproveitar modalidades de imaxe complementarias non etiquetadas para o adestramento de redes neuronais profundas. Ademais, tamén desenvolvemos novos métodos para a análise en detalle das imaxes do fondo de ollo. Neste sentido, esta tese explora a análise de estruturas retinianas relevantes, así como o diagnóstico de diferentes enfermidades da retina. En xeral, os algoritmos desenvolvidos proporcionan resultados satisfactorios para a análise das imaxes de fondo de ollo, mesmo cando a dispoñibilidade de datos de adestramento etiquetados é limitada.
 
Palabras chave
Diagnóstico por imagen
Oftalmología-Informática
Tratamiento de imágenes en medicina
 
Dereitos
Atribución-NoComercial-SinDerivadas 4.0 Internacional

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións