Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • 1. Investigación
  • Grupos de investigación
  • Grupo de Polímeros
  • GI-Polímeros - Artigos
  • View Item
  •   DSpace Home
  • 1. Investigación
  • Grupos de investigación
  • Grupo de Polímeros
  • GI-Polímeros - Artigos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Crystallization-Induced Gelling as a Method to 4D Print Low-Water-Content Non-isocyanate Polyurethane Hydrogels

Thumbnail
View/Open
2021_Fanjul-Mosteirin_Crystallization-Induced Gelling as a Method to 4D Print.pdf (6.507Mb)
Use this link to cite
http://hdl.handle.net/2183/29359
Attribution 4.0 International (CC BY 4.0)
Except where otherwise noted, this item's license is described as Attribution 4.0 International (CC BY 4.0)
Collections
  • OpenAIRE [161]
  • GI-Polímeros - Artigos [21]
Metadata
Show full item record
Title
Crystallization-Induced Gelling as a Method to 4D Print Low-Water-Content Non-isocyanate Polyurethane Hydrogels
Author(s)
Fanjul-Mosteirín, Noé
Aguirresarobe, Robert
Sadaba, Naroa
Larrañaga, Aitor
Marín, Edurne
Martín, Jaime
Ramos-Gómez, Nicolás
Arno, Maria Chiara
Date
2021
Citation
Fanjul-Mosteirín, N.; Aguirresarobe, R.; Sadaba, N.; Larrañaga, A.; Marin, E.; Martin, J.; Ramos-Gomez, N.; Arno, M. C.; Sardon, H.; Dove, A. P. Crystallization-Induced Gelling as a Method to 4D Print Low-Water-Content Non-Isocyanate Polyurethane Hydrogels. Chem. Mater. 2021, 33 (18), 7194–7202. https://doi.org/10.1021/acs.chemmater.1c00913.
Abstract
[Abstract] The use of three-dimensional (3D) printable hydrogels for biomedical applications has attracted considerable attention as a consequence of the ability to precisely define the morphology of the printed object, allowing patients’ needs to be targeted. However, the majority of hydrogels do not possess suitable mechanical properties to fulfill an adequate rheological profile for printability, and hence, 3D printing of cross-linked networks is challenging and normally requires postprinting modifications to obtain the desired scaffolds. In this work, we took advantage of the crystallization process of poly(ethylene glycol) to print non-isocyanate poly(hydroxyurethane) hydrogels with tunable mechanical properties. As a consequence of the crystallization process, the hydrogel modulus can be tuned up to 3 orders of magnitude upon heating up to 40 °C, offering an interesting strategy to directly 3D-print hydrogels without the need of postprinting cross-linking. Moreover, the absence of any toxicity makes these materials ideal candidates for biomedical applications.
Keywords
Crystallization
3D printing
Inorganic carbon compounds
Hydrogels
Materials
 
Editor version
https://doi.org/10.1021/acs.chemmater.1c00913
Rights
Attribution 4.0 International (CC BY 4.0)
ISSN
0897-4756
1520-5002
 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback