Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Adaptive Real-Time Method for Anomaly Detection Using Machine Learning

Thumbnail
Ver/abrir
D.Novoa-Paradela_2020_Adaptive_Real-Time_Method_for Anomaly Detection.pdf (238.8Kb)
Use este enlace para citar
http://hdl.handle.net/2183/26380
Atribución 4.0 Internacional (CC BY 4.0)
A non ser que se indique outra cousa, a licenza do ítem descríbese como Atribución 4.0 Internacional (CC BY 4.0)
Coleccións
  • Investigación (FIC) [1711]
Metadatos
Mostrar o rexistro completo do ítem
Título
Adaptive Real-Time Method for Anomaly Detection Using Machine Learning
Autor(es)
Novoa-Paradela, David
Fontenla-Romero, Óscar
Guijarro-Berdiñas, Bertha
Data
2020-08-20
Cita bibliográfica
Novoa-Paradela, D.; Fontenla-Romero, Ó.; Guijarro-Berdiñas, B. Adaptive Real-Time Method for Anomaly Detection Using Machine Learning. Proceedings 2020, 54, 38. https://doi.org/10.3390/proceedings2020054038
Resumo
[Abstract] Anomaly detection is a sub-area of machine learning that deals with the development of methods to distinguish among normal and anomalous data. Due to the frequent use of anomaly-detection systems in monitoring and the lack of methods capable of learning in real time, this research presents a new method that provides such online adaptability. The method bases its operation on the properties of scaled convex hulls. It begins building a convex hull, using a minimum set of data, that is adapted and subdivided along time to accurately fit the boundary of the normal class data. The model has online learning ability and its execution can be carried out in a distributed and parallel way, all of them interesting advantages when dealing with big datasets. The method has been compared to other state-of-the-art algorithms demonstrating its effectiveness.
Palabras chave
Anomaly detection
Convex hull
Data streaming
Big data
 
Versión do editor
https://doi.org/10.3390/proceedings2020054038
Dereitos
Atribución 4.0 Internacional (CC BY 4.0)
ISSN
2504-3900

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións