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Abstract: Anomaly detection is a sub-area of machine learning that deals with the development
of methods to distinguish among normal and anomalous data. Due to the frequent use of
anomaly-detection systems in monitoring and the lack of methods capable of learning in real time,
this research presents a new method that provides such online adaptability. The method bases its
operation on the properties of scaled convex hulls. It begins building a convex hull, using a minimum
set of data, that is adapted and subdivided along time to accurately fit the boundary of the normal
class data. The model has online learning ability and its execution can be carried out in a distributed
and parallel way, all of them interesting advantages when dealing with big datasets. The method has
been compared to other state-of-the-art algorithms demonstrating its effectiveness.
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1. Introduction

Anomaly detection, also known as one-class classification, is the process of identifying unexpected
events in data that differ from what is considered normal instances. It has two basic assumptions: anomalies
only occur very rarely and their features differ from the normal data significantly. Because anomalous
data occurs very sporadically, in most real-world problems only data of the normal class is available. Then,
most machine learning approaches for two-class supervised classification are not applicable to develop
automatic methods for anomaly detection. Therefore, it requires specific machine learning methods whose
training phase is generally carried out using only normal data. These methods try to model the normal
class boundaries, so that new data can be classified by checking whether they belong to the normal class or
not. This type of problem is frequent in real-world scenarios, such as predictive maintenance of industrial
machinery. In this of problems, the ability to learn in real time can be essential as there may not be a sufficient
amount of data at the beginning of the learning process but over time. There are many use cases (medical,
IT security, etc.) where this situation happens and the detection methods must be able to start making
decisions as soon as possible with very little initial knowledge and adapt this knowledge as new data
are available. This paper presents the adaptation of an anomaly-detection method [1,2] based on convex
hulls and random projections. The main contributions are to allow the convex hulls to be dynamically
changed in an online learning scenario and to represent non-convex regions as a union of several convex
hulls. The limits of the normal class will adapt when new data is processed, without store all the data or
retrain from scratch.

2. Base Methods

Calculating the CH (Convex Hull) in high-dimensional spaces is a computationally expensive
task. Due to this, several anomaly-detection methods choose to project the data on 2-D spaces in
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which the calculation of CHs is simple [1]. This random projection technique is based on the idea that
high-dimensional data spaces can be projected into a lower-dimensional space without significantly
losing the data structure if multiple projections are used. Base methods consist of the following:

1. Learning phase: Given a data set (normal data), a number τ of random projections of the data
e are made onto 2-D subspaces. First, τ random matrices are generated. Second, the training
set is projected into the space generated by each projection matrix. Finally, the CH’s vertices are
calculated in each projection, this being the aim of training (see projections P1, P2, P3 in Figure 1).
These vertices are projections of the original data; therefore, the algorithms only need to store the
vertices forming the CHs and the projection matrices, discarding the rest of the training data.

2. Classification phase: To predict the class of a new data point, it is first projected using the τ

projections generated during the training phase. For each projection, and given the set of vertices
of the CH of that 2-D space, it is possible to check if the point is inside the corresponding polygon.
It will be classified as normal only if it is inside all CHs. This procedure is shown in Figure 1.
The new point (green) will be classified as an anomaly since it falls out of CH in the P1 projection.

Figure 1. Projections of a 3-D data cloud (black), CHs of each 2-D space (orange) and a new point.

3. Online and Sub-Divisible Distributed Scaled Convex Hull

The main objective of OSHULL (Online and Sub-divisible Distributed Scaled Convex Hull), is to
carry out online one-class learning, so that starting from a minimum set of initial data points, it allows
learning and adjusting the model with the arrival of new normal data. Also, because base methods are
not suitable for dealing with datasets with non-convex shapes, OSHULL implements this capability.
The procedures described below are applied independently to the CH at each of the projections.

3.1. Convex Hull Adjustment

To provide the ability to learn in real time, the limits of CHs must be readjusted as new data is
available to the system. To do this, and at the same time guarantee some system stability, these limits
will be expanded whenever a considerable number of data falls systematically and concentrated
around the same area between the limits of the CH and a margin. In this case, the behavior of the
algorithm will be to extend the limits of the CH to cover, as far as possible, that area where normal
data did not appear when building the initial CH.

3.2. Region Subdivision

Because representing datasets using a single CH produces poor results in datasets with non-convex
geometric shapes, the OSHULL method implements an iterative process that subdivides CHs for
a better fit to the shape of the data. In this way, starting from an initial CH, it can be recursively
subdivided into as many convex hulls as necessary to properly approximate the shape of normal
data. Therefore, the method may represent non-convex regions as the union of various convex regions.
At each projection several convex hulls can coexist that will continue to be readjusted individually.
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3.3. Freezing Process

In the same way that a CH must be subdivided, a CH with all its edges at low distances from the
data, and therefore well adjusted, must be maintained until the end of training and prevent it from
being unnecessarily subdivided. This process is called freezing. A CH will freeze if all its edges are at
normal distances and it has not been subdivided for a given number of iterations.

3.4. Pruning Process

After several subdivisions, some convex hulls can cover empty regions of normal data. Also,
small convex hulls can be found that overlap the margins of other adjacent convex hulls. To get rid
of them, a periodic pruning process is performed that eliminates those convex hulls that have not
received data inside during a period, as it is assumed that they do not represent normal data.

4. Results

To evaluate the method, 8 datasets were employed (5 artificial and 3 real ones). Artificial datasets
were used to evaluate the ability of the method to adapt to certain 3-D shapes. Real datasets were
used to evaluate it in higher-dimensional datasets (6, 19 and 30 features). The results obtained by
our method in an anomaly-detection scenario were compared to state-of-the-art algorithms working
in batch mode. As they do not have the ability to adapt in real time, they were trained with the full
training dataset. Conversely, the training process of OSHULL was carried out in real time: first creating
the convex hulls with a small dataset and then iteratively readjusting them with the remaining data.
Table 1 contains the average results for the test sets. Similarity was used as metric because is a balance
between accuracy and recall. Although our method had the fourth position, its average similarity is
close to the top, despite the disadvantage of being trained in online mode compared to batch mode.

Table 1. Average similarity (%) ± standard deviations for the different algorithms.

Algorithm LOF O-SVM RC OSHULL IF O-DSCH

Avg. similarity 91.6± 5.9 90.6± 6.6 89.4± 8.8 89.3± 7.8 85.1± 6.3 71.7± 19.1

5. Conclusions

OSHULL is an anomaly-detection method that offers online learning without significant loss of
performance compared to classic batch methods, and its subdivision capacity favors it for treating
non-convex problems. It is a light model as it is not necessary to store all the data for the creation or
adaptation of CHs and it just needs to store their vertices. As an additional feature, the convex closures
of each projection could be executed in parallel and distributed to achieve greater efficiency.
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