An UAV and Satellite Multispectral Data Approach to Monitor Water Quality in Small Reservoirs

View/ Open
Use this link to cite
http://hdl.handle.net/2183/25697Collections
- Investigación (ETSECCP) [825]
Metadata
Show full item recordTitle
An UAV and Satellite Multispectral Data Approach to Monitor Water Quality in Small ReservoirsAuthor(s)
Date
2020Citation
Cillero Castro, C.; Domínguez Gómez, J.A.; Delgado Martín, J.; Hinojo Sánchez, B.A.; Cereijo Arango, J.L.; Cheda Tuya, F.A.; Díaz-Varela, R. An UAV and Satellite Multispectral Data Approach to Monitor Water Quality in Small Reservoirs. Remote Sens. 2020, 12, 1514. https://doi.org/10.3390/rs12091514
Abstract
[Abstract] A multi-sensor and multi-scale monitoring tool for the spatially explicit and periodic monitoring of eutrophication in a small drinking water reservoir is presented. The tool was built with freely available satellite and in situ data combined with Unmanned Aerial Vehicle (UAV)-based technology. The goal is to evaluate the performance of a multi-platform approach for the trophic state monitoring with images obtained with MultiSpectral Sensors on board satellites Sentinel 2 (S2A and S2B), Landsat 8 (L8) and UAV. We assessed the performance of three different sensors (MultiSpectral Instrument (MSI), Operational Land Imager (OLI) and Rededge Micasense) for retrieving the pigment chlorophyll-a (chl-a), as a quantitative descriptor of phytoplankton biomass and trophic level. The study was conducted in a waterbody affected by cyanobacterial blooms, one of the most important eutrophication-derived risks for human health. Different empirical models and band indices were evaluated. Spectral band combinations using red and near-infrared (NIR) bands were the most suitable for retrieving chl-a concentration (especially 2 band algorithm (2BDA), the Surface Algal Bloom Index (SABI) and 3 band algorithm (3BDA)) even though blue and green bands were useful to classify UAV images into two chl-a ranges. The results show a moderately good agreement among the three sensors at different spatial resolutions (10 m., 30 m. and 8 cm.), indicating a high potential for the development of a multi-platform and multi-sensor approach for the eutrophication monitoring of small reservoirs.
Keywords
Satellite
Water quality
Multispectral imagery
UAV
Eutrophication
Monitoring
Water quality
Multispectral imagery
UAV
Eutrophication
Monitoring
Description
This article belongs to the Special Issue She Maps (https://www.mdpi.com/journal/remotesensing/special_issues/shemaps)
Editor version
Rights
Atribución 4.0 Internacional