Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Escola Técnica Superior de Enxeñaría de Camiños, Canais e Portos
  • Investigación (ETSECCP)
  • View Item
  •   DSpace Home
  • Escola Técnica Superior de Enxeñaría de Camiños, Canais e Portos
  • Investigación (ETSECCP)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An UAV and Satellite Multispectral Data Approach to Monitor Water Quality in Small Reservoirs

Thumbnail
View/Open
remotesensing-12-01514.pdf (4.640Mb)
Use this link to cite
http://hdl.handle.net/2183/25697
Atribución 4.0 Internacional
Except where otherwise noted, this item's license is described as Atribución 4.0 Internacional
Collections
  • Investigación (ETSECCP) [826]
Metadata
Show full item record
Title
An UAV and Satellite Multispectral Data Approach to Monitor Water Quality in Small Reservoirs
Author(s)
Cillero Castro, Carmen
Domínguez Gómez, José Antonio
Delgado Martín, Jordi
Hinojo Sánchez, Boris Alejandro
Cereijo Arango, José Luis
Cheda Tuya, Federico Andrés
Díaz-Varela, Ramón Alberto
Date
2020
Citation
Cillero Castro, C.; Domínguez Gómez, J.A.; Delgado Martín, J.; Hinojo Sánchez, B.A.; Cereijo Arango, J.L.; Cheda Tuya, F.A.; Díaz-Varela, R. An UAV and Satellite Multispectral Data Approach to Monitor Water Quality in Small Reservoirs. Remote Sens. 2020, 12, 1514. https://doi.org/10.3390/rs12091514
Abstract
[Abstract] A multi-sensor and multi-scale monitoring tool for the spatially explicit and periodic monitoring of eutrophication in a small drinking water reservoir is presented. The tool was built with freely available satellite and in situ data combined with Unmanned Aerial Vehicle (UAV)-based technology. The goal is to evaluate the performance of a multi-platform approach for the trophic state monitoring with images obtained with MultiSpectral Sensors on board satellites Sentinel 2 (S2A and S2B), Landsat 8 (L8) and UAV. We assessed the performance of three different sensors (MultiSpectral Instrument (MSI), Operational Land Imager (OLI) and Rededge Micasense) for retrieving the pigment chlorophyll-a (chl-a), as a quantitative descriptor of phytoplankton biomass and trophic level. The study was conducted in a waterbody affected by cyanobacterial blooms, one of the most important eutrophication-derived risks for human health. Different empirical models and band indices were evaluated. Spectral band combinations using red and near-infrared (NIR) bands were the most suitable for retrieving chl-a concentration (especially 2 band algorithm (2BDA), the Surface Algal Bloom Index (SABI) and 3 band algorithm (3BDA)) even though blue and green bands were useful to classify UAV images into two chl-a ranges. The results show a moderately good agreement among the three sensors at different spatial resolutions (10 m., 30 m. and 8 cm.), indicating a high potential for the development of a multi-platform and multi-sensor approach for the eutrophication monitoring of small reservoirs.
Keywords
Satellite
Water quality
Multispectral imagery
UAV
Eutrophication
Monitoring
 
Description
This article belongs to the Special Issue She Maps (https://www.mdpi.com/journal/remotesensing/special_issues/shemaps)
Editor version
https://doi.org/10.3390/rs12091514
Rights
Atribución 4.0 Internacional
Related resource
https://www.mdpi.com/journal/remotesensing/special_issues/shemaps

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback