dc.contributor.author | Rivero, Daniel | |
dc.contributor.author | Ramírez-Morales, Iván | |
dc.contributor.author | Fernández-Blanco, Enrique | |
dc.contributor.author | Ezquerra, Noberto | |
dc.contributor.author | Pazos, A. | |
dc.date.accessioned | 2020-04-29T14:16:05Z | |
dc.date.available | 2020-04-29T14:16:05Z | |
dc.date.issued | 2020-04-27 | |
dc.identifier.citation | Rivero, D.; Ramírez-Morales, I.; Fernandez-Blanco, E.; Ezquerra, N.; Pazos, A. Classical Music Prediction and Composition by Means of Variational Autoencoders. Appl. Sci. 2020, 10, 3053. https://doi.org/10.3390/app10093053 | es_ES |
dc.identifier.issn | 2076-3417 | |
dc.identifier.uri | http://hdl.handle.net/2183/25463 | |
dc.description.abstract | [Abstract] This paper proposes a new model for music prediction based on Variational Autoencoders
(VAEs). In this work, VAEs are used in a novel way to address two different issues: music representation into the latent space, and using this representation to make predictions of the future note events of the musical piece. This approach was trained with different songs of Handel. As a result, the system can represent the music in the latent space, and make accurate predictions. Therefore, the system can be used to compose new music either from an existing piece or from a random starting point. An additional feature of this system is that a small dataset was used for training. However, results show that the system is able to return accurate representations and predictions on unseen data | es_ES |
dc.description.sponsorship | This work is supported by Instituto de Salud Carlos III, grant number PI17/01826 (Collaborative Project in Genomic Data Integration CICLOGEN) funded by the Instituto de Salud Carlos III from the Spanish National plan for Scientific and Technical Research and Innovation 2013-2016 and the European Regional Development Funds (FEDER). This project was also supported by the General Directorate of Culture, Education and University Management of Xunta de Galicia ED431D 2017/16 and Drug Discovery Galician Network Ref. ED431G/01 and the Galician Network for Colorectal Cancer Research (Ref. ED431D 2017/23), and by the Spanish Ministry of Economy and Competitiveness through the funding of the unique installation BIOCAI (UNLC08-1E-002, UNLC13-13-3503) and the European Regional Development Funds (FEDER) by the European Union. This work was also funded by the grant for the consolidation and structuring of competitive research units (ED431C 2018/49) from the General Directorate of Culture, Education and University Management of Xunta de Galicia, and the CYTED network (PCI2018_093284) funded by the Spanish Ministry of Ministry of Innovation and Science. The experiments described in this section were carried out using the equipment of the Galician Supercomputing Center (CESGA) | es_ES |
dc.description.sponsorship | Xunta de Galicia; ED431D 2017/16 | es_ES |
dc.description.sponsorship | Xunta de Galicia; ED431G/01 | es_ES |
dc.description.sponsorship | Xunta de Galicia; ED431D 2017/23 | es_ES |
dc.description.sponsorship | Xunta de Galicia; ED431C 2018/49 | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.uri | https://doi.org/10.3390/app10093053 | es_ES |
dc.rights | Atribución 4.0 Internacional | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Music composition | es_ES |
dc.subject | Deep learning | es_ES |
dc.subject | Variational autoencoders | es_ES |
dc.title | Classical Music Prediction and Composition by Means of Variational Autoencoders | es_ES |
dc.type | journal article | es_ES |
dc.rights.accessRights | open access | es_ES |
UDC.journalTitle | Applied Sciences | es_ES |
UDC.volume | 10 | es_ES |
UDC.issue | 9 | es_ES |
UDC.startPage | 1 | es_ES |
UDC.endPage | 14 | es_ES |
dc.identifier.doi | 10.3390/app10093053 | |
UDC.coleccion | Investigación | es_ES |
UDC.departamento | Ciencias da Computación e Tecnoloxías da Información | es_ES |
UDC.grupoInv | Redes de Neuronas Artificiais e Sistemas Adaptativos -Informática Médica e Diagnóstico Radiolóxico (RNASA - IMEDIR) | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ISCIII/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013–2016/PI17%2F01826/ES/PROYECTO COLABORATIVO DE INTEGRACION DE DATOS GENOMICOS (CICLOGEN). TECNICAS DE DATA MINING Y DOCKING MOLECULAR PARA ANALISIS DE DATOS INTEGRATIVOS EN CANCER DE COLON/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC/Plan Nacional de I+D+i 2008-2011/UNLC08-1E-002/ES/Infraestructura computacional para la Red Gallega de Bioinformática | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/UNLC13-1E-2503/ES/Plataforma HPC-PLUS para aplicaciones biomédicas | |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PCI2018-093284/ES/OBESIDAD Y DIABETES EN IBEROAMERICA: FACTORES DE RIESGO Y NUEVOS BIOMARCADORES PATOGENICOS Y PREDICTIVOS | |