Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Classical Music Prediction and Composition by Means of Variational Autoencoders

Thumbnail
View/Open
applsci-10-03053-v2.pdf - Classical Music Prediction and Composition by Means of Variational Autoencoders - Main Article (392.0Kb)
Use this link to cite
http://hdl.handle.net/2183/25463
Atribución 4.0 Internacional
Except where otherwise noted, this item's license is described as Atribución 4.0 Internacional
Collections
  • Investigación (FIC) [1678]
Metadata
Show full item record
Title
Classical Music Prediction and Composition by Means of Variational Autoencoders
Author(s)
Rivero, Daniel
Ramírez-Morales, Iván
Fernández-Blanco, Enrique
Ezquerra, Norberto
Pazos, A.
Date
2020-04-27
Citation
Rivero, D.; Ramírez-Morales, I.; Fernandez-Blanco, E.; Ezquerra, N.; Pazos, A. Classical Music Prediction and Composition by Means of Variational Autoencoders. Appl. Sci. 2020, 10, 3053. https://doi.org/10.3390/app10093053
Abstract
[Abstract] This paper proposes a new model for music prediction based on Variational Autoencoders (VAEs). In this work, VAEs are used in a novel way to address two different issues: music representation into the latent space, and using this representation to make predictions of the future note events of the musical piece. This approach was trained with different songs of Handel. As a result, the system can represent the music in the latent space, and make accurate predictions. Therefore, the system can be used to compose new music either from an existing piece or from a random starting point. An additional feature of this system is that a small dataset was used for training. However, results show that the system is able to return accurate representations and predictions on unseen data
Keywords
Music composition
Deep learning
Variational autoencoders
 
Editor version
https://doi.org/10.3390/app10093053
Rights
Atribución 4.0 Internacional
ISSN
2076-3417

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback