Show simple item record

dc.contributor.authorVallez, Noelia
dc.contributor.authorVelasco Mata, Alberto
dc.contributor.authorCotorro, Juan José
dc.contributor.authorDeniz, Óscar
dc.date.accessioned2019-08-12T10:54:09Z
dc.date.issued2019
dc.identifier.citationVallez, N., Velasco-Mata, A., Cotorro, J.J., Deniz, O. (2019). ¿Es posible entrenar modelos de aprendizaje profundo con datos sintéticos? En XL Jornadas de Automática: libro de actas, Ferrol, 4-6 de septiembre de 2019 (pp. 859-865). DOI capítulo: https://doi.org/10.17979/spudc.9788497497169.859. DOI libro: https://doi.org/10.17979/spudc.9788497497169es_ES
dc.identifier.isbn978-84-9749-716-9
dc.identifier.urihttp://hdl.handle.net/2183/23715
dc.description.abstract[Resumen] La demanda de datos para el entrenamiento de las nuevas t ecnicas de aprendizaje profundo se ha incrementado durante los ultimos a~nos. Aunque se ha creado una comunidad extensa alrededor del intercambio de datos, e incluso muchos de los conjuntos de datos de grandes empresas se han publicado de forma gratuita, contin ua habiendo problemas espec cos para los que no se dispone de conjuntos espec cos para el entrenamiento de los modelos que los resuelvan. Este es el caso de la detecci on de armas en escenas videovigiladas donde la detecci on temprana de situaciones y objetos peligrosos es de vital importancia. Varias han sido las soluciones propuestas en los ultimos a~nos al respecto pero la adquisici on de los datos necesarios para su desarrollo sigue siendo un problema. Por ello, en este trabajo se propone generar im agenes de videovigilancia con un motor gr a co y comprobar si estos datos sint eticos pueden sustituir la captura y el etiquetado de im agenes realeses_ES
dc.description.abstract[Abstract] With the development of the new deep lear- ning techniques, the data demand for trai- ning these models has increased. Although a large community has been created around data and even big companies have relea- se their own datasets free of charge, there are speci c problems for which training da- tasets are not available. This is the case of weapon detection in video-surveillance where the early detection of dangerous si- tuations and objects is of vital importance. Several solutions have been proposed in the last years but the data barrier is still a pro- blem. Therefore, in this work we propose to generate video surveillance images with a graphical engine and check if the synt- hetic data generated can replace collecting and labeling real imageses_ES
dc.description.sponsorshipMinisterio de Economía y Empresa; TIN2017-82113-C2-2-Res_ES
dc.description.sponsorshipJunta de Castilla la Mancha; SBPLY/17/180501/000543es_ES
dc.language.isospaes_ES
dc.publisherUniversidade da Coruña, Servizo de Publicaciónses_ES
dc.relation.urihttps://doi.org/10.17979/spudc.9788497497169.859es_ES
dc.rightsAtribución-NoComercial-CompartirIgual 4.0es_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0*
dc.subjectDetección de objetoses_ES
dc.subjectAprendizaje profundoes_ES
dc.subjectDatos sintéticoses_ES
dc.subjectObject detectiones_ES
dc.subjectDeep learninges_ES
dc.subjectSyntetic dataes_ES
dc.title¿Es posible entrenar modelos de aprendizaje profundo con datos sintéticos?es_ES
dc.title.alternativeIs it possible to train deep Learning models with Synthetic data?es_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessinfo:eu-repo/semantics/embargoedAccesses_ES
dc.date.embargoEndDate2019-08-25es_ES
dc.date.embargoLift2019-08-25
UDC.startPage859es_ES
UDC.endPage865es_ES
UDC.conferenceTitleXL Jornadas de Automáticaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record