Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • 1. Investigación
  • Grupos de investigación
  • Redes de Neuronas Artificiais e Sistemas Adaptativos -Informática Médica e Diagnóstico Radiolóxico (RNASA - IMEDIR)
  • GI-RNASA - Artigos
  • View Item
  •   DSpace Home
  • 1. Investigación
  • Grupos de investigación
  • Redes de Neuronas Artificiais e Sistemas Adaptativos -Informática Médica e Diagnóstico Radiolóxico (RNASA - IMEDIR)
  • GI-RNASA - Artigos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimization of existing equations using a new genetic programming algorithm: application to the shear strength of reinforced concrete beams

Thumbnail
View/Open
Prez_Optmztion.pdf (978.7Kb)
Use this link to cite
http://hdl.handle.net/2183/21029
Atribución-NoComercial-SinDerivadas 3.0 España
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 3.0 España
Collections
  • GI-RNASA - Artigos [163]
Metadata
Show full item record
Title
Optimization of existing equations using a new genetic programming algorithm: application to the shear strength of reinforced concrete beams
Author(s)
Pérez, Juan L.
Cladera, Antoni
Rabuñal, Juan R.
Martínez-Abella, Fernando
Date
2012-03-13
Citation
Pérez JL, Cladera A, Rabuñal JR, Martínez-Abella F. Optimization of existing equations using a new genetic programming algorithm: application to the shear strength of reinforced concrete beams. Adv Eng Softw. 2012;50:82-96
Abstract
[Abstract] A method based on Genetic Programming (GP) to improve previously known empirical equations is presented. From a set of experimental data, the GP may improve the adjustment of such formulas through the symbolic regression technique. Through a set of restrictions, and the indication of the terms of the expression to be improved, GP creates new individuals. The methodology allows us to study the need of including new variables in the expression. The proposed method is applied to the shear strength of concrete beams. The results show a marked improvement using this methodology in relation to the classic GP and international code procedures.
Keywords
Artificial intelligence
Genetic programming
Structural engineering
Concrete
Shear strength
Regression analysis
 
Editor version
https://doi.org/10.1016/j.advengsoft.2012.02.008
Rights
Atribución-NoComercial-SinDerivadas 3.0 España
ISSN
0965-9978

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback