Optimization of existing equations using a new genetic programming algorithm: application to the shear strength of reinforced concrete beams

Ver/ abrir
Use este enlace para citar
http://hdl.handle.net/2183/21029
A non ser que se indique outra cousa, a licenza do ítem descríbese como Atribución-NoComercial-SinDerivadas 3.0 España
Coleccións
- Investigación (FIC) [1688]
Metadatos
Mostrar o rexistro completo do ítemTítulo
Optimization of existing equations using a new genetic programming algorithm: application to the shear strength of reinforced concrete beamsData
2012-03-13Cita bibliográfica
Pérez JL, Cladera A, Rabuñal JR, Martínez-Abella F. Optimization of existing equations using a new genetic programming algorithm: application to the shear strength of reinforced concrete beams. Adv Eng Softw. 2012;50:82-96
Resumo
[Abstract] A method based on Genetic Programming (GP) to improve previously known empirical equations is presented. From a set of experimental data, the GP may improve the adjustment of such formulas through the symbolic regression technique. Through a set of restrictions, and the indication of the terms of the expression to be improved, GP creates new individuals. The methodology allows us to study the need of including new variables in the expression. The proposed method is applied to the shear strength of concrete beams. The results show a marked improvement using this methodology in relation to the classic GP and international code procedures.
Palabras chave
Artificial intelligence
Genetic programming
Structural engineering
Concrete
Shear strength
Regression analysis
Genetic programming
Structural engineering
Concrete
Shear strength
Regression analysis
Versión do editor
Dereitos
Atribución-NoComercial-SinDerivadas 3.0 España
ISSN
0965-9978