Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Facultade de Ciencias da Saúde
  • Investigación (FCS)
  • View Item
  •   DSpace Home
  • Facultade de Ciencias da Saúde
  • Investigación (FCS)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Texture Analysis in Gel Electrophoresis Images Using an Integrative Kernel-Based Approach

Thumbnail
View/Open
FernandezLozano_TextureAnalysis.pdf (1.554Mb)
Use this link to cite
http://hdl.handle.net/2183/17437
Atribución 3.0 España
Except where otherwise noted, this item's license is described as Atribución 3.0 España
Collections
  • Investigación (FCS) [1293]
Metadata
Show full item record
Title
Texture Analysis in Gel Electrophoresis Images Using an Integrative Kernel-Based Approach
Author(s)
Fernández-Lozano, Carlos
Seoane, José A.
Gestal, M.
Gaunt, Tom R.
Dorado, Julián
Pazos, A.
Campbell, Colin
Date
2016-01-13
Citation
Fernández-Lozano C, Seoane JA, Gestal M, Gaunt TR, Dorado J, Pazos A, et al. Texture analysis in gel electrophoresis images using an integrative kernel-based approach. Nature [Internet]. 2016 Ene 13;19256. (Scientific Reports; 6).
Abstract
[Abstract] Texture information could be used in proteomics to improve the quality of the image analysis of proteins separated on a gel. In order to evaluate the best technique to identify relevant textures, we use several different kernel-based machine learning techniques to classify proteins in 2-DE images into spot and noise. We evaluate the classification accuracy of each of these techniques with proteins extracted from ten 2-DE images of different types of tissues and different experimental conditions. We found that the best classification model was FSMKL, a data integration method using multiple kernel learning, which achieved AUROC values above 95% while using a reduced number of features. This technique allows us to increment the interpretability of the complex combinations of textures and to weight the importance of each particular feature in the final model. In particular the Inverse Difference Moment exhibited the highest discriminating power. A higher value can be associated with an homogeneous structure as this feature describes the homogeneity; the larger the value, the more symmetric. The final model is performed by the combination of different groups of textural features. Here we demonstrated the feasibility of combining different groups of textures in 2-DE image analysis for spot detection.
Keywords
Data mining
Image processing
Machine learning
Proteome informatics
 
Editor version
http://dx.doi.org/10.1038/srep19256
Rights
Atribución 3.0 España

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback