Weighted Local Nonparametric Regression with Dependent Errors: Study of Real Private Residential Fixed Investment in the USA

Ver/ abrir
Use este enlace para citar
http://hdl.handle.net/2183/862Coleccións
- Investigación (FIC) [1687]
Metadatos
Mostrar o rexistro completo do ítemTítulo
Weighted Local Nonparametric Regression with Dependent Errors: Study of Real Private Residential Fixed Investment in the USAData
2004Cita bibliográfica
Statistical Interference for stochastic processes, 2004, 7, p. 69-93
Resumo
This paper presents an overview of the existing literature on the nonparametric local
polynomial (LPR) estimator of the regression function and its derivatives when the observations are
dependent. When the errors of the regression model are correlated and follow an ARMA process,
Vilar-Fernández and Francisco-Fernández (2002) proposed a modification of the LPR estimator,
called the generalized local polynomial (GLPR) estimator, based on, first, transforming the regression
model to get uncorrelated errors and then applying the LPR estimator to the new model. Some of
the most significant asymptotic properties of these two weighted local estimators, including some
guidelines on how to select the bandwidth parameter, are reviewed. Finally, these techniques are
used to study the real private residential fixed investment in the USA.
Palabras chave
Local polynomial estimator
Dependent data
Smoothing parameter
Dependent data
Smoothing parameter
Versión do editor
Dereitos
The original publication is available at Springerlink