Mostrar o rexistro simple do ítem

dc.contributor.authorBao Souto, Eliseo
dc.contributor.authorPérez, Anxo
dc.contributor.authorParapar, Javier
dc.date.accessioned2024-09-17T17:07:36Z
dc.date.available2024-09-17T17:07:36Z
dc.date.issued2024-09
dc.identifier.citationBao, E., Pérez, A. & Parapar, J. Explainable depression symptom detection in social media. Health Inf Sci Syst 12, 47 (2024). https://doi.org/10.1007/s13755-024-00303-9es_ES
dc.identifier.issn2047-2501
dc.identifier.urihttp://hdl.handle.net/2183/39093
dc.description.abstract[Abstract]: Users of social platforms often perceive these sites as supportive spaces to post about their mental health issues. Those conversations contain important traces about individuals’ health risks. Recently, researchers have exploited this online information to construct mental health detection models, which aim to identify users at risk on platforms like Twitter, Reddit or Facebook. Most of these models are focused on achieving good classification results, ignoring the explainability and interpretability of the decisions. Recent research has pointed out the importance of using clinical markers, such as the use of symptoms, to improve trust in the computational models by health professionals. In this paper, we introduce transformer-based architectures designed to detect and explain the appearance of depressive symptom markers in user-generated content from social media. We present two approaches: (i) train a model to classify, and another one to explain the classifier’s decision separately and (ii) unify the two tasks simultaneously within a single model. Additionally, for this latter manner, we also investigated the performance of recent conversational Large Language Models (LLMs) utilizing both in-context learning and finetuning. Our models provide natural language explanations, aligning with validated symptoms, thus enabling clinicians to interpret the decisions more effectively. We evaluate our approaches using recent symptom-focused datasets, using both offline metrics and expert-in-the-loop evaluations to assess the quality of our models’ explanations. Our findings demonstrate that it is possible to achieve good classification results while generating interpretable symptom-based explanations.es_ES
dc.description.sponsorshipThis work has received support from projects: PLEC2021-007662 (MCIN/AEI/10.13039/501100011033, Ministerio de Ciencia e Innovación, European Union NextGenerationEU/PRTR) and PID2022-137061OB-C21 (MCIN/AEI/10.13039/501100011033/, Ministerio de Ciencia e Innovación, ERDF A way of making Europe, by the European Union); Consellería de Educación, Universidade e Formación Profesional, Spain (grant number ED481A-2024-079 and accreditations 2019–2022 ED431G/01 and GPC ED431B 2022/33) and the European Regional Development Fund, which acknowledges the CITIC Research Center. Funding for open access charge: Universidade da Coruña/CISUG. We would also like to thank Desireé Pombar, Silvia López-Larrosa and Laura Hermo for their efforts in evaluating the results. Their work allowed us to assess the practical utility and clinical relevance of the explanations generated.es_ES
dc.description.sponsorshipXunta de Galicia; ED481A-2024-079es_ES
dc.description.sponsorshipXunta de Galicia; ED431G/01es_ES
dc.description.sponsorshipXunta de Galicia; ED431B 2022/33es_ES
dc.description.sponsorshipFinanciado para publicación en acceso aberto: Universidade da Coruña/CISUGes_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.relation.urihttps://doi.org/10.1007/s13755-024-00303-9es_ES
dc.rightsAtribución 4.0 Internacionales_ES
dc.rights© The Authors 2024.es_ES
dc.rightsThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.es_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectExplainabilityes_ES
dc.subjectInterpretabilityes_ES
dc.subjectDepression detectiones_ES
dc.subjectSocial mediaes_ES
dc.titleExplainable depression symptom detection in social mediaes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
UDC.journalTitleHealth Information Science and Systemses_ES
UDC.volume12es_ES
UDC.issue47es_ES
UDC.startPage1es_ES
UDC.endPage18es_ES
dc.identifier.doi10.1007/s13755-024-00303-9
UDC.coleccionInvestigaciónes_ES
UDC.departamentoCiencias da Computación e Tecnoloxías da Informaciónes_ES
UDC.grupoInvInformation Retrieval Lab (IRlab)es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2024/PLEC2021-007662/ES/BIG-eRISK: PREDICCIÓN TEMPRANA DE RIESGOS PERSONALES EN CONJUNTOS DE DATOS MASIVOSes_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica, Técnica y de Innovación 2021-2023/PID2022-137061OB-C21/ES/BUSQUEDA, SELECCION Y ORGANIZACION DE CONTENIDOS PARA NECESIDADES DE INFORMACION RELACIONADAS CON LA SALUD - CONSTRUCCION DE RECURSOS Y PERSONALIZACIONes_ES


Ficheiros no ítem

Thumbnail
Thumbnail

Este ítem aparece na(s) seguinte(s) colección(s)

Mostrar o rexistro simple do ítem