Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Overview of eRisk 2024: Early Risk Prediction on the Internet (Extended Overview)

Thumbnail
Ver/abrir
Parapar_Javier_2024_Overview_of_eRisk_at_CLEF_2024.pdf (417.8Kb)
Use este enlace para citar
http://hdl.handle.net/2183/38956
Atribución 4.0 Internacional
A non ser que se indique outra cousa, a licenza do ítem descríbese como Atribución 4.0 Internacional
Coleccións
  • Investigación (FIC) [1678]
Metadatos
Mostrar o rexistro completo do ítem
Título
Overview of eRisk 2024: Early Risk Prediction on the Internet (Extended Overview)
Autor(es)
Parapar, Javier
Martín-Rodilla, Patricia
Losada, David E.
Crestani, Fabio
Data
2024
Cita bibliográfica
Parapar, J., Martín-Rodilla, P., Losada, D. E., & Crestani, F. (2023). Overview of eRisk at CLEF 2024: Early Risk Prediction on the Internet (Extended Overview). CEUR Workshop Proceedings. Vol. 3740, Pages 759 – 781. Working Notes of the Conference and Labs of the Evaluation Forum (CLEF 2024), Grenoble, France, 9-12 September, 2024.
Resumo
[Abstract]: This paper presents eRisk 2024, the eighth edition of the CLEF conference’s lab dedicated to early risk detection. Since its inception, the lab has been at the forefront of developing and refining evaluation methodologies, effectiveness metrics, and processes for early risk detection across various domains. These early alerting models hold significant value, particularly in sectors focused on health and safety, where timely intervention can be crucial. eRisk 2024 featured three main tasks designed to push the boundaries of early risk detection techniques. The first task challenged participants to rank sentences based on their relevance to standardized depression symptoms, a crucial step in identifying early signs of depression from textual data. The second task focused on the early detection of anorexia indicators, aiming to develop models that can recognize the subtle cues of this eating disorder before it becomes critical. The third task was centered around estimating responses to an eating disorders questionnaire by analyzing users’ social media posts. Participants had to leverage the rich, real-world textual data available on social media to gauge potential mental health risks. Through these tasks, eRisk 2024 continues to advance the field of early risk detection, fostering innovations that could lead to significant improvements in public health interventions.
Palabras chave
Early risk
Depression
Anorexia
Eating disorders
 
Descrición
Included in: Working Notes of the Conference and Labs of the Evaluation Forum (CLEF 2024) Grenoble, France, 9-12 September, 2024.
Versión do editor
https://ceur-ws.org/Vol-3740/paper-72.pdf
Dereitos
Atribución 4.0 Internacional
 
© 2024 Copyright for this paper by its authors.
 
ISSN
1613-0073

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións