Mostrar o rexistro simple do ítem

dc.contributor.authorFalcon-Suarez, Ismael Himar
dc.contributor.authorPapageorgiou, Giorgos
dc.contributor.authorJin, Zhaoyu
dc.contributor.authorMuñoz-Ibáñez, Andrea
dc.contributor.authorChapman, Mark
dc.contributor.authorBest, Angus I.
dc.date.accessioned2024-07-08T18:26:39Z
dc.date.available2024-07-08T18:26:39Z
dc.date.issued2020
dc.identifier.citationFalcon-Suarez, I. H., Papageorgiou, G., Jin, Z., Muñoz-Ibáñez, A., Chapman, M., Best, A. I. (2020). CO2-Brine Substitution Effects on Ultrasonic Wave Propagation Through Sandstone With Oblique Fractures. Geophysical Research Letters, 47(16). https://doi.org/10.1029/2020GL088439es_ES
dc.identifier.urihttp://hdl.handle.net/2183/37811
dc.description.abstract[Abstract:] Seismic monitoring of injected CO2 plumes in fractured storage reservoirs relies on accurate knowledge of the physical mechanisms governing elastic wave propagation, as described by appropriate, validated rock physics models. We measured laboratory ultrasonic velocity and attenuation of P and S waves, and electrical resistivity, of a synthetic fractured sandstone with obliquely aligned (penny-shaped) fractures, undergoing a brine-CO2 flow-through test at simulated reservoir pressure and temperature. Our results show systematic differences in the dependence of velocity and attenuation on fluid saturation between imbibition and drainage episodes, which we attribute to uniform and patchy fluid distributions, respectively, and the relative permeability of CO2 and brine in the rock. This behavior is consistent with predictions from a multifluid rock physics model, facilitating the identification of the dispersive mechanisms associated with wave-induced fluid flow in fractured systems at seismic scales.es_ES
dc.description.sponsorshipWe have received funding from the U.K.'s Natural Environment Research Council (grant NE/R013535/1 GASRIP and grant NE/N016041/1 CHIMNEY), the European Union's Horizon 2020 research and innovation programme (grant no. 654462 STEMM-CCS), the program PETROMAKS2 of the Research Council of Norway (RCN grant number: 267765), and the Xunta de Galicia and the European Union (European Social Fund—ESF). Zhaoyu Jin was supported by the Principal's Career Development PhD Scholarship and Edinburgh Global Research Scholarship from The University of Edinburgh. The experiment was conducted at the NOC Rock Physics Laboratory in Southampton. The authors thank Dr. Laurence North for his support in the laboratory with the geophysical measurements.es_ES
dc.description.sponsorshipReino Unido. U.K. Natural Environment Research Council; NE/R013535/1 GASRIPes_ES
dc.description.sponsorshipReino Unido. U.K. Natural Environment Research Council; NE/N016041/1 CHIMNEYes_ES
dc.description.sponsorshipNoruega. Research Council of Norway; 267765es_ES
dc.language.isoenges_ES
dc.publisherAmerican Geophysical Union AGUes_ES
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/654462es_ES
dc.relation.urihttps://doi.org/10.1029/2020GL088439es_ES
dc.rightsAtribución 3.0 Españaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectUltrasonic waveses_ES
dc.subjectElectrical resistivityes_ES
dc.subjectFractureses_ES
dc.subjectCO2 storagees_ES
dc.titleCO2-Brine Substitution Effects on Ultrasonic Wave Propagation Through Sandstone With Oblique Fractureses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessinfo:eu-repo/semantics/openAccesses_ES
UDC.journalTitleGeophysical Research Letterses_ES
UDC.volume47es_ES
UDC.issue16es_ES
UDC.startPagee2020GL088439es_ES
dc.identifier.doi10.1029/2020GL088439


Ficheiros no ítem

Thumbnail
Thumbnail

Este ítem aparece na(s) seguinte(s) colección(s)

Mostrar o rexistro simple do ítem