Mostrar o rexistro simple do ítem

dc.contributor.authorAres-Pernas, Ana
dc.contributor.authorRodrigues-Mariño, T.
dc.contributor.authorCorreia, V.
dc.contributor.authorTubio, C.-R.
dc.contributor.authorAbad, María José
dc.contributor.authorLanceros-Mendez, Senentxu
dc.contributor.authorCosta, P.
dc.date.accessioned2024-07-05T11:23:59Z
dc.date.available2024-07-05T11:23:59Z
dc.date.issued2023-10
dc.identifier.citationRodrigues-Marinho, T., Correia, V., Tubio, C. R., Ares-Pernas, A., Abad, M. J., Lanceros-Méndez, S., & Costa, P. (2023). Flexible thermoelectric energy harvesting system based on polymer composites. Chemical Engineering Journal, 473, 145297.es_ES
dc.identifier.urihttp://hdl.handle.net/2183/37751
dc.description.abstract[Abstract] Flexible and easy processing lightweight thermoelectric materials for energy harvesting applications have shown an increasing interest. Thermoplastic polyvinylidene fluoride (PVDF) and elastomer styrene-ethylene/butylene- styrene (SEBS) polymers reinforced with thermoelectric ceramics, including bismuth sulfide (Bi2S3), bismuth telluride (Bi2Te3) and antimony telluride (Sb2Te3), and electrically conductive carbon nanotubes (CNT) have been developed, tailoring their thermal and electrical properties for thermoelectric device applications. The Seebeck coefficient of the composites increases with thermoelectric ceramic filler content for semicrystalline PVDF composites, slightly decreasing for amorphous SEBS composite. Thermoelectric power factor and figure-of- merit in the polymer composites increases up to 9 orders of magnitude with respect to the pristine polymer, up to a maximum value of 10 3 µW/(m⋅K2) and 10 6, respectively, for the PVDF/CNT/Bi2Te3 composite. A device composed by 2 printable p-n thermocouples based on PVDF/50Bi2S3 and PVDF/50Bi2Te3 can generate power in the order of the nW and charge a capacitor with 5 V. Theoretical modeling allows to evaluate different thermoelectric configurations, the effect of the number of thermocouples and the influence of the temperature gradient on device performance.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relation.urihttps://doi.org/10.1016/j.cej.2023.145297es_ES
dc.rightsAtribución 3.0 Españaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectEnergy harvestinges_ES
dc.subjectPolymers matriceses_ES
dc.subjectCeramices_ES
dc.subjectPrinting materialses_ES
dc.subjectEasy processinges_ES
dc.titleFlexible thermoelectric energy harvesting system based on polymer compositeses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessinfo:eu-repo/semantics/openAccesses_ES
UDC.journalTitleChemical Engineering Journales_ES
UDC.volume473es_ES
UDC.startPage145297es_ES


Ficheiros no ítem

Thumbnail
Thumbnail

Este ítem aparece na(s) seguinte(s) colección(s)

Mostrar o rexistro simple do ítem