dc.contributor.author | Ares-Pernas, Ana | |
dc.contributor.author | Arias-Ferreiro, Goretti | |
dc.contributor.author | Lasagabáster-Latorre, Aurora | |
dc.contributor.author | Dopico-García, M. Sonia | |
dc.contributor.author | Pereira, N. | |
dc.contributor.author | Costa, P. | |
dc.contributor.author | Lanceros-Mendez, Senentxu | |
dc.contributor.author | Abad, María José | |
dc.date.accessioned | 2024-07-05T11:23:11Z | |
dc.date.available | 2024-07-05T11:23:11Z | |
dc.date.issued | 2022-07 | |
dc.identifier.citation | G. Arias-Ferreiro, A. Lasagabáster-Latorre, A. Ares-Pernas, M. S. Dopico-García, N. Pereira, P. Costa, S. Lanceros-Mendez, M. Abad, Flexible 3D Printed Acrylic Composites based on Polyaniline/Multiwalled Carbon Nanotubes for Piezoresistive Pressure Sensors. Adv. Electron. Mater. 2022, 8, 2200590. https://doi.org/10.1002/aelm.202200590 | es_ES |
dc.identifier.uri | http://hdl.handle.net/2183/37750 | |
dc.description.abstract | [Abstract] The development of tunable UV-curable polymeric composites for functional applications, taking into consideration environmental issues and additive manufacturing technologies, is a research topic with relevant challenges yet to be solved. Herein, acrylic composites filled with 0–3 wt.%. polyaniline/ multiwalled carbon nanotubes (PANI/MWCNT) are prepared by Digital Light Processing (DLP) in order to tailor morphology, thermal, mechanical, and electromechanical properties. Viscosity, real-time infrared spectroscopy, and cure depth tests allow optimizing resin composition for suitable DLP printing. 2 wt.% is the maximum filler content reproducibly embedded in the polymer matrix. The advantages of PANI/MWCNT (50/50 wt.%) compared with single-component composites include safety issues, enhanced printability, increased electrical conductivity and thermal stability, and lower electrical percolation threshold (0.83 wt.%). Above this threshold the composites display excellent piezoresistive response, no hysteresis, and stability for over 400 compression cycles. The pressure sensibility (PS) of 2 wt.% composites decreases with applied pressure from PS ≈ 15 to 0.8 Mpa−1 for maximum pressures of 0.02 and 0.57 MPa, respectively. A proof-of-concept of the functionality of the novel materials is developed in the form of a tactile sensor, demonstrating their potential for pressure sensing applications as cost-effective, sustainable, and flexible materials for printed electronics. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Wiley | es_ES |
dc.relation.uri | https://doi.org/10.1002/aelm.202200590 | es_ES |
dc.rights | Atribución-NoComercial-SinDerivadas 3.0 España | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | * |
dc.subject | Acrylic composites | es_ES |
dc.subject | Carbon nanotubes | es_ES |
dc.subject | Piezoresistive pressure sensors | es_ES |
dc.subject | Digital light processing | es_ES |
dc.title | Flexible 3D Printed Acrylic Composites based on Polyaniline/Multiwalled Carbon Nanotubes for Piezoresistive Pressure Sensors | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.rights.access | info:eu-repo/semantics/openAccess | es_ES |
UDC.journalTitle | Advanced Electronic Materials | es_ES |
UDC.volume | 8 | es_ES |
UDC.issue | 12 | es_ES |
UDC.startPage | 2200590 | es_ES |