Show simple item record

dc.contributor.authorAres-Pernas, Ana
dc.contributor.authorArias-Ferreiro, Goretti
dc.contributor.authorLasagabáster-Latorre, Aurora
dc.contributor.authorDopico-García, M. Sonia
dc.contributor.authorPereira, N.
dc.contributor.authorCosta, P.
dc.contributor.authorLanceros-Mendez, Senentxu
dc.contributor.authorAbad, María José
dc.date.accessioned2024-07-05T11:23:11Z
dc.date.available2024-07-05T11:23:11Z
dc.date.issued2022-07
dc.identifier.citationG. Arias-Ferreiro, A. Lasagabáster-Latorre, A. Ares-Pernas, M. S. Dopico-García, N. Pereira, P. Costa, S. Lanceros-Mendez, M. Abad, Flexible 3D Printed Acrylic Composites based on Polyaniline/Multiwalled Carbon Nanotubes for Piezoresistive Pressure Sensors. Adv. Electron. Mater. 2022, 8, 2200590. https://doi.org/10.1002/aelm.202200590es_ES
dc.identifier.urihttp://hdl.handle.net/2183/37750
dc.description.abstract[Abstract] The development of tunable UV-curable polymeric composites for functional applications, taking into consideration environmental issues and additive manufacturing technologies, is a research topic with relevant challenges yet to be solved. Herein, acrylic composites filled with 0–3 wt.%. polyaniline/ multiwalled carbon nanotubes (PANI/MWCNT) are prepared by Digital Light Processing (DLP) in order to tailor morphology, thermal, mechanical, and electromechanical properties. Viscosity, real-time infrared spectroscopy, and cure depth tests allow optimizing resin composition for suitable DLP printing. 2 wt.% is the maximum filler content reproducibly embedded in the polymer matrix. The advantages of PANI/MWCNT (50/50 wt.%) compared with single-component composites include safety issues, enhanced printability, increased electrical conductivity and thermal stability, and lower electrical percolation threshold (0.83 wt.%). Above this threshold the composites display excellent piezoresistive response, no hysteresis, and stability for over 400 compression cycles. The pressure sensibility (PS) of 2 wt.% composites decreases with applied pressure from PS ≈ 15 to 0.8 Mpa−1 for maximum pressures of 0.02 and 0.57 MPa, respectively. A proof-of-concept of the functionality of the novel materials is developed in the form of a tactile sensor, demonstrating their potential for pressure sensing applications as cost-effective, sustainable, and flexible materials for printed electronics.es_ES
dc.language.isoenges_ES
dc.publisherWileyes_ES
dc.relation.urihttps://doi.org/10.1002/aelm.202200590es_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Españaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectAcrylic compositeses_ES
dc.subjectCarbon nanotubeses_ES
dc.subjectPiezoresistive pressure sensorses_ES
dc.subjectDigital light processinges_ES
dc.titleFlexible 3D Printed Acrylic Composites based on Polyaniline/Multiwalled Carbon Nanotubes for Piezoresistive Pressure Sensorses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessinfo:eu-repo/semantics/openAccesses_ES
UDC.journalTitleAdvanced Electronic Materialses_ES
UDC.volume8es_ES
UDC.issue12es_ES
UDC.startPage2200590es_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record