Mostrar o rexistro simple do ítem
How Discriminative Are Your Qrels? How To Study the Statistical Significance of Document Adjudication Methods
dc.contributor.author | Otero, David | |
dc.contributor.author | Parapar, Javier | |
dc.contributor.author | Ferro, Nicola | |
dc.date.accessioned | 2024-06-27T07:51:29Z | |
dc.date.available | 2024-06-27T07:51:29Z | |
dc.date.issued | 2023-10 | |
dc.identifier.citation | Otero, D., Parapar, J., & Ferro, N. (2023). How Discriminative Are Your Qrels? How To Study the Statistical Significance of Document Adjudication Methods. International Conference on Information and Knowledge Management, Proceedings, 32nd ACM International Conference on Information and Knowledge Management, CIKM 2023, pp. 1960-1970. https://doi.org/10.1145/3583780.3614916 | es_ES |
dc.identifier.isbn | 9798400701245 | |
dc.identifier.uri | http://hdl.handle.net/2183/37458 | |
dc.description.abstract | [Abstract]: Creating test collections for offline retrieval evaluation requires human effort to judge documents' relevance. This expensive activity motivated much work in developing methods for constructing benchmarks with fewer assessment costs. In this respect, adjudication methods actively decide both which documents and the order in which experts review them, in order to better exploit the assessment budget or to lower it. Researchers evaluate the quality of those methods by measuring the correlation between the known gold ranking of systems under the full collection and the observed ranking of systems under the lower-cost one. This traditional analysis ignores whether and how the low-cost judgements impact on the statistically significant differences among systems with respect to the full collection. We fill this void by proposing a novel methodology to evaluate how the low-cost adjudication methods preserve the pairwise significant differences between systems as the full collection. In other terms, while traditional approaches look for stability in answering the question "is system A better than system B?", our proposed approach looks for stability in answering the question "is system A significantly better than system B?", which is the ultimate questions researchers need to answer to guarantee the generalisability of their results. Among other results, we found that the best methods in terms of ranking of systems correlation do not always match those preserving statistical significance. | es_ES |
dc.description.sponsorship | This work has received support from: (i) project PLEC2021-007662 (MCIN/AEI/10.13039/501100011033, Ministerio de Ciencia e Inno-vación, Agencia Estatal de Investigación, Plan de Recuperación, Transformación y Resiliencia, Unión Europea-Next GenerationEU); (ii) Programa de Ayudas para la Formación de Profesorado Universitario, grant number FPU20/02659 (Ministerio de Universidades); (iii) project PID2022-137061OB-C21 (Proyectos de Generación de Conocimiento, MCIN); (iv) project ED431-B 2022/33 (Xunta de Galicia/ERDF); (v) CAMEO, PRIN 2022 n. 2022ZLL7MW. | es_ES |
dc.description.sponsorship | Xunta de Galicia; ED431-B 2022/33 | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Association for Computing Machinery | es_ES |
dc.relation.uri | https://doi.org/10.1145/3583780.3614916 | es_ES |
dc.rights | Attribution 4.0 International License (CC BY) | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ | * |
dc.subject | Adjudication Method | es_ES |
dc.subject | Evaluation | es_ES |
dc.subject | Pooling | es_ES |
dc.subject | Significance | es_ES |
dc.title | How Discriminative Are Your Qrels? How To Study the Statistical Significance of Document Adjudication Methods | es_ES |
dc.type | conference output | es_ES |
dc.rights.accessRights | open access | es_ES |
UDC.journalTitle | International Conference on Information and Knowledge Management, Proceedings | es_ES |
UDC.startPage | 1960 | es_ES |
UDC.endPage | 1970 | es_ES |
dc.identifier.doi | 10.1145/3583780.3614916 | |
UDC.conferenceTitle | CIKM 2023 | es_ES |
UDC.coleccion | Investigación | es_ES |
UDC.departamento | Ciencias da Computación e Tecnoloxías da Información | es_ES |
UDC.grupoInv | Information Retrieval Lab (IRlab) | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2024/PLEC2021-007662/ES/BIG-eRISK: PREDICCIÓN TEMPRANA DE RIESGOS PERSONALES EN CONJUNTOS DE DATOS MASIVOS | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/FPU20%2F02659/ES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-137061OB-C21/ES/BUSQUEDA, SELECCION Y ORGANIZACION DE CONTENIDOS PARA NECESIDADES DE INFORMACION RELACIONADAS CON LA SALUD - CONSTRUCCION DE RECURSOS Y PERSONALIZACION | es_ES |
Ficheiros no ítem
Este ítem aparece na(s) seguinte(s) colección(s)
-
Investigación (FIC) [1636]