Show simple item record

dc.contributor.authorBaamonde, Sergio
dc.contributor.authorMoura, Joaquim de
dc.contributor.authorNovo Buján, Jorge
dc.contributor.authorRouco, J.
dc.contributor.authorOrtega Hortas, Marcos
dc.date.accessioned2024-06-14T10:55:38Z
dc.date.available2024-06-14T10:55:38Z
dc.date.issued2017-10
dc.identifier.citationBaamonde, S., de Moura, J., Novo, J., Rouco, J., Ortega, M. (2017). Feature Definition and Selection for Epiretinal Membrane Characterization in Optical Coherence Tomography Images. In: Battiato, S., Gallo, G., Schettini, R., Stanco, F. (eds) Image Analysis and Processing - ICIAP 2017 . ICIAP 2017. Lecture Notes in Computer Science, vol 10485, pp. 456-466. Springer, Cham. https://doi.org/10.1007/978-3-319-68548-9_42es_ES
dc.identifier.isbn978-3-319-68547-2
dc.identifier.isbn978-3-319-68548-9
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.urihttp://hdl.handle.net/2183/36969
dc.descriptionThe conference was held in Catania, Italy, September 11-15, 2017.es_ES
dc.description.abstract[Absctract]: Optical Coherence Tomography (OCT) is a common imaging technique for the detection and analysis of optical diseases, since it is a non invasive method that generates in vivo a cross-sectional visualization of the retinal tissues. These characteristics contributed to the use of OCT imaging in the analysis of pathologies as, for instance, vitreomacular traction, age-related macular degeneration or hypertension. Among its applications, OCT imaging can be used in the detection of any present epiretinal membrane section in the retina, a critical issue to prevent further complications caused by this pathology. This work analyzed the main characteristics of the epiretinal membrane to define a complete and heterogeneous set of intensity and texture-based features. Those features were studied using representative selectors, as Correlation Feature Selection (CFS) and Relief-F, to identify the optimal subsets that offer the higher discriminative power. K-Nearest Neighbor (kNN), Naive Bayes and Random Forest were finally tested in a method for the automatic detection of the epiretinal membrane in OCT images. Previous works do not focus on automatic procedures and, on the contrary, depend on manual markers or supervised detections, while our method improves significantly this task by automating the search of the region of interest and the classification of the pixels belonging to that area. The methodology was tested using a dataset of 129 OCT images. 120 samples were equally obtained from those scans, featuring both zones with and without epiretinal membrane. The best results were provided by the Random Forest classifier that, using a window size of 15 pixels, a quantity of 13 histogram bins and 28 features, achieved an accuracy of 93.89%.es_ES
dc.description.sponsorshipThis work is supported by the Instituto de Salud Carlos III, Government of Spain and FEDER funds of the European Union through the PI14/02161 and the DTS15/00153 research projects and by the Ministerio de Economía y Competitividad, Government of Spain through the DPI2015-69948-R research project.es_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.relationinfo:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/PI14%2F02161/ES/DESARROLLO DE UN SISTEMA AUTOMÁTICO PARA EL CÁLCULO Y VISUALIZACIÓN DE PROPIEDADES ANATÓMICAS DE LA RETINA EN SD-OCT Y SU CORRELACIÓN CON ANÁLISIS FUNCIONALES HETEROGÉNEOS DE LA VISIÓNes_ES
dc.relationinfo:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DTS15%2F00153/ES/SIRIUS - SISTEMA DE ANÁLISIS DE MICROCIRCULACIÓN RETINIANA: EVALUACIÓN MULTIDISCIPLINAR E INTEGRACIÓN EN PROTOCOLOS CLÍNICOSes_ES
dc.relationinfo:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2015-69948-R/ES/IDENTIFICACION Y CARACTERIZACION DEL EDEMA MACULAR DIABETICO MEDIANTE ANALISIS AUTOMATICO DE TOMOGRAFIAS DE COHERENCIA OPTICA Y TECNICAS DE APRENDIZAJE MAQUINAes_ES
dc.relation.urihttps://doi.org/10.1007/978-3-319-68548-9_42es_ES
dc.rights©2017 Springer Naturees_ES
dc.subjectComputer-aided diagnosises_ES
dc.subjectRetinal imaginges_ES
dc.subjectOptical Coherence Tomographyes_ES
dc.subjectEpiretinal membranees_ES
dc.subjectFeature selectiones_ES
dc.subjectClassificationes_ES
dc.titleFeature Definition and Selection for Epiretinal Membrane Characterization in Optical Coherence Tomography Imageses_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.rights.accessinfo:eu-repo/semantics/openAccesses_ES
UDC.journalTitleImage Analysis and Processing - ICIAP 2017: 19th International Conference, Catania, Italy, September 11-15, 2017, Proceedings, Part II (Lecture Notes in Computer Science, LNCS)es_ES
UDC.volume10485es_ES
UDC.startPage456es_ES
UDC.endPage466es_ES
UDC.conferenceTitle19th International Conference of Image Analysis and Processing, ICIAP 2017es_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record