Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Delving into the Depths: Evaluating Depression Severity through BDI-biased Summaries

Thumbnail
Ver/abrir
Parapar_Javier_2024_Delving_into_the_Depths_Evaluating_Depression_Severity_through_BDI_biased_Summaries.pdf (793.4Kb)
Use este enlace para citar
http://hdl.handle.net/2183/36414
© 2024 ACL
A non ser que se indique outra cousa, a licenza do ítem descríbese como © 2024 ACL
Coleccións
  • Investigación (FIC) [1728]
Metadatos
Mostrar o rexistro completo do ítem
Título
Delving into the Depths: Evaluating Depression Severity through BDI-biased Summaries
Autor(es)
Aragón, Mario Ezra
Parapar, Javier
Losada, David E.
Data
2024-03
Cita bibliográfica
Mario Aragon, Javier Parapar, and David E Losada. 2024. Delving into the Depths: Evaluating Depression Severity through BDI-biased Summaries. In Proceedings of the 9th Workshop on Computational Linguistics and Clinical Psychology (CLPsych 2024), pages 12–22, St. Julians, Malta. Association for Computational Linguistics.
Resumo
[Abstract]: Depression is a global concern suffered by millions of people, significantly impacting their thoughts and behavior. Over the years, heightened awareness, spurred by health campaigns and other initiatives, has driven the study of this disorder using data collected from social media platforms. In our research, we aim to gauge the severity of symptoms related to depression among social media users. The ultimate goal is to estimate the user’s responses to a well-known standardized psychological questionnaire, the Beck Depression Inventory-II (BDI). This is a 21-question multiple-choice self-report inventory that covers multiple topics about how the subject has been feeling. Mining users’ social media interactions and understanding psychological states represents a challenging goal. To that end, we present here an approach based on search and summarization that extracts multiple BDI-biased summaries from the thread of users’ publications. We also leverage a robust large language model to estimate the potential answer for each BDI item. Our method involves several steps. First, we employ a search strategy based on sentence similarity to obtain pertinent extracts related to each topic in the BDI questionnaire. Next, we compile summaries of the content of these groups of extracts. Last, we exploit chatGPT to respond to the 21 BDI questions, using the summaries as contextual information in the prompt. Our model has undergone rigorous evaluation across various depression datasets, yielding encouraging results. The experimental report includes a comparison against an assessment done by expert humans and competes favorably with state-of-the-art methods.
Palabras chave
Social media
Computational Intelligence
eRisk
Mental health
Social media monitoring
Language models
 
Versión do editor
https://aclanthology.org/2024.clpsych-1.2/
Dereitos
© 2024 ACL
 
Atribución 4.0 Internacional
 
ISBN
979-8-89176-093-6

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións