Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Filoloxía
  • Investigación (FFIL)
  • Ver ítem
  •   RUC
  • Facultade de Filoloxía
  • Investigación (FFIL)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

LyS at SemEval-2016 Task 4: Exploiting Neural Activation Values for Twitter Sentiment Classification and Quantification

Thumbnail
Ver/abrir
Vilares_David_2016_LyS_at_SemEval_2016_Task_4.pdf (444.2Kb)
Use este enlace para citar
http://hdl.handle.net/2183/36201
Atribución 4.0 Internacional
A non ser que se indique outra cousa, a licenza do ítem descríbese como Atribución 4.0 Internacional
Coleccións
  • Investigación (FFIL) [877]
Metadatos
Mostrar o rexistro completo do ítem
Título
LyS at SemEval-2016 Task 4: Exploiting Neural Activation Values for Twitter Sentiment Classification and Quantification
Autor(es)
Vilares, David
Doval, Yerai
Alonso, Miguel A.
Gómez-Rodríguez, Carlos
Data
2016
Cita bibliográfica
David Vilares, Yerai Doval, Miguel A. Alonso, and Carlos Gómez-Rodríguez. 2016. LyS at SemEval-2016 Task 4: Exploiting Neural Activation Values for Twitter Sentiment Classification and Quantification. In Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016), pages 79–84, San Diego, California. Association for Computational Linguistics.
Resumo
[Abstract]: In this paper we describe our deep learning approach for solving both two-, three- and fiveclass tweet polarity classification, and twoand five-class quantification. We first trained a convolutional neural network using pretrained Twitter word embeddings, so that we could extract the hidden activation values from the hidden layers once some input had been fed to the network. These values were then used as features for a support vector machine in both the classification and quantification subtasks, together with additional linguistic information in the former scenario. The results obtained for the classification subtasks show that this approach performs better than a single convolutional network, and for the quantification part it also yields good results. Official rankings locate us: 2nd (practically tied with 1st) for the binary classification task, 2nd for binary quantification and 4th (practically tied with 3rd) for the five-class polarity classification challenge.
Palabras chave
Twitter
Sentiment Analysis
Convolutional neural network
 
Versión do editor
https://doi.org/10.18653/v1/S16-1009
Dereitos
Atribución 4.0 Internacional
ISBN
9781510826076

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións