Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Nonparametric estimation for a functional-circular regression model

Thumbnail
Ver/abrir
FranciscoFernandez_Mario_2024_Nonparametric_estimation_for_a_functional_circular_regression_model.pdf (1.705Mb)
Use este enlace para citar
http://hdl.handle.net/2183/36027
Attribution 4.0 International (CC BY)
A non ser que se indique outra cousa, a licenza do ítem descríbese como Attribution 4.0 International (CC BY)
Coleccións
  • Investigación (FIC) [1723]
Metadatos
Mostrar o rexistro completo do ítem
Título
Nonparametric estimation for a functional-circular regression model
Autor(es)
Meilán-Vila, Andrea
Crujeiras-Casais, Rosa M.
Francisco-Fernández, Mario
Data
2024
Cita bibliográfica
Meilán-Vila, A., Crujeiras, R.M. & Francisco-Fernández, M. Nonparametric estimation for a functional-circular regression model. Stat Papers 65, 945–974 (2024). https://doi.org/10.1007/s00362-023-01420-5
Resumo
[Abstract]: Changes on temperature patterns, on a local scale, are perceived by individuals as the most direct indicators of global warming and climate change. As a specific example, for an Atlantic climate location, spring and fall seasons should present a mild transition between winter and summer, and summer and winter, respectively. By observing daily temperature curves along time, being each curve attached to a certain calendar day, a regression model for these variables (temperature curve as covariate and calendar day as response) would be useful for modeling their relation for a certain period. In addition, temperature changes could be assessed by prediction and observation comparisons in the long run. Such a model is presented and studied in this work, considering a nonparametric Nadaraya–Watson-type estimator for functional covariate and circular response. The asymptotic bias and variance of this estimator, as well as its asymptotic distribution are derived. Its finite sample performance is evaluated in a simulation study and the proposal is applied to investigate a real-data set concerning temperature curves.
Palabras chave
Circular data
Flexible regression
Functional data
Temperature curves
 
Descrición
Financiado para publicación en acceso aberto: CRUE-CSIC
Versión do editor
https://doi.org/10.1007/s00362-023-01420-5
Dereitos
Attribution 4.0 International (CC BY)

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións