A syntactic approach for opinion mining on Spanish reviews
Ver/ abrir
Use este enlace para citar
http://hdl.handle.net/2183/34989
A non ser que se indique outra cousa, a licenza do ítem descríbese como Atribución-NoComercial-SinDerivadas 4.0 Internacional
Coleccións
- GI-LYS - Artigos [51]
Metadatos
Mostrar o rexistro completo do ítemTítulo
A syntactic approach for opinion mining on Spanish reviewsData
2015-01Cita bibliográfica
Vilares, D., Alonso, M., & Gómez-Rodríguez, C. (2015). A syntactic approach for opinion mining on Spanish reviews. Natural Language Engineering, 21(1), 139-163. doi:10.1017/S1351324913000181
É version de
https://doi.org/10.1017/S1351324913000181
Resumo
[Abstract]: We describe an opinion mining system which classifies the polarity of Spanish texts. We propose an NLP approach that undertakes pre-processing, tokenisation and POS tagging of texts to then obtain the syntactic structure of sentences by means of a dependency parser. This structure is then used to address three of the most significant linguistic constructions for the purpose in question: intensification, subordinate adversative clauses and negation. We also propose a semi-automatic domain adaptation method to improve the accuracy of our system in specific application domains, by enriching semantic dictionaries using machine learning methods in order to adapt the semantic orientation of their words to a particular field. Experimental results are promising in both general and specific domains.
Palabras chave
Sentiment Analysis
Natural language processing
Opinion mining
Natural language processing
Opinion mining
Descrición
This accepted version of the article has been published in a revised form in Natural Language Engineering, 21(1),
139-163. https://doi.org/10.1017/S1351324913000181 . This version is published
under a Creative Commons CC-BY-NC-ND licence. No commercial re-distribution or re-use
allowed. Derivative works cannot be distributed. © Cambridge University Press 2013 .
Versión do editor
Dereitos
Atribución-NoComercial-SinDerivadas 4.0 Internacional
ISSN
1351-3249
1469-8110
1469-8110