Mostrar o rexistro simple do ítem

dc.contributor.authorMeira, Jorge
dc.contributor.authorEiras-Franco, Carlos
dc.contributor.authorBolón-Canedo, Verónica
dc.contributor.authorMarreiros, Goreti
dc.contributor.authorAlonso-Betanzos, Amparo
dc.date.accessioned2023-11-30T11:43:03Z
dc.date.available2023-11-30T11:43:03Z
dc.date.issued2022-08
dc.identifier.citationJ. Meira, C. Eiras-Franco, V. Bolón-Canedo, G. Marreiros, y A. Alonso-Betanzos, «Fast anomaly detection with locality-sensitive hashing and hyperparameter autotuning», Information Sciences, vol. 607, pp. 1245-1264, ago. 2022, doi: 10.1016/j.ins.2022.06.035.es_ES
dc.identifier.issn0020-0255
dc.identifier.urihttp://hdl.handle.net/2183/34389
dc.description.abstract[Abstract]: This paper presents LSHAD, an anomaly detection (AD) method based on Locality Sensitive Hashing (LSH), capable of dealing with large-scale datasets. The resulting algorithm is highly parallelizable and its implementation in Apache Spark further increases its ability to handle very large datasets. Moreover, the algorithm incorporates an automatic hyperparameter tuning mechanism so that users do not have to implement costly manual tuning. Our LSHAD method is novel as both hyperparameter automation and distributed properties are not usual in AD techniques. Our results for experiments with LSHAD across a variety of datasets point to state-of-the-art AD performance while handling much larger datasets than state-of-the-art alternatives. In addition, evaluation results for the tradeoff between AD performance and scalability show that our method offers significant advantages over competing methods.es_ES
dc.description.sponsorshipThis research has been financially supported in part by the Spanish Ministerio de Economía y Competitividad (project PID-2019-109238GB-C22) and by the Xunta de Galicia (grants ED431C 2018/34 and ED431G 2019/01) through European Union ERDF funds. CITIC, as a research center accredited by the Galician University System, is funded by the Consellería de Cultura, Educación e Universidades of the Xunta de Galicia, supported 80% through ERDF Funds (ERDF Operational Programme Galicia 2014–2020) and 20% by the Secretaría Xeral de Universidades (Grant ED431G 2019/01).This work was also supported by National Funds through the Portuguese FCT - Fundação para a Ciência e a Tecnologia (projects UIDB/00760/2020 and UIDP/00760/2020).es_ES
dc.description.sponsorshipXunta de Galicia; ED431C 2018/34es_ES
dc.description.sponsorshipXunta de Galicia; ED431G 2019/01es_ES
dc.description.sponsorshipXunta de Galicia; ED431G 2019/01es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-109238GB-C22/ES/APRENDIZAJE AUTOMATICO ESCALABLE Y EXPLICABLEes_ES
dc.relation.urihttps://doi.org/10.1016/j.ins.2022.06.035es_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Españaes_ES
dc.rightsCC BY-NC-ND 4.0es_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectAnomaly detectiones_ES
dc.subjectUnsupervised learninges_ES
dc.subjectAutoMLes_ES
dc.subjectScalabilityes_ES
dc.subjectBig dataes_ES
dc.titleFast anomaly detection with locality-sensitive hashing and hyperparameter autotuninges_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessinfo:eu-repo/semantics/openAccesses_ES
UDC.journalTitleInformation Scienceses_ES
UDC.volume607es_ES
UDC.startPage1245es_ES
UDC.endPage1264es_ES
UDC.coleccionInvestigación
UDC.departamentoCiencias da Computación e Tecnoloxías da Información
UDC.grupoInvLaboratorio de Investigación e Desenvolvemento en Intelixencia Artificial (LIDIA)


Ficheiros no ítem

Thumbnail
Thumbnail

Este ítem aparece na(s) seguinte(s) colección(s)

Mostrar o rexistro simple do ítem