Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Traballos académicos (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Traballos académicos (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Aprendizaje profundo para la segmentación automática de drusas en imágenes OCT retinianas

Thumbnail
Ver/abrir
LeyvaSantaren_Saul_TFG_2023.pdf (14.47Mb)
Use este enlace para citar
http://hdl.handle.net/2183/33356
Atribución-CompartirIgual 3.0 España
A non ser que se indique outra cousa, a licenza do ítem descríbese como Atribución-CompartirIgual 3.0 España
Coleccións
  • Traballos académicos (FIC) [716]
Metadatos
Mostrar o rexistro completo do ítem
Título
Aprendizaje profundo para la segmentación automática de drusas en imágenes OCT retinianas
Autor(es)
Leyva Santarén, Saúl
Director(es)
Moura, Joaquim de
Ortega Hortas, Marcos
Data
2023
Centro/Dpto/Entidade
Universidade da Coruña. Facultade de Informática
Descrición
Traballo fin de grao (UDC.FIC). Enxeñaría informática. Curso 2022/2023
Resumo
[Resumen]: La degeneración macular asociada a la edad (DMAE) es una de las principales causas de pérdida de visión en individuos mayores de 50 años. Los primeros indicadores de esta enfermedad, las drusas, son minúsculas acumulaciones de material que se forman en la retina. Detectar, segmentar y cuantificar estas drusas en las imágenes de tomografía de coherencia óptica (OCT) es un paso crítico para el diagnóstico temprano y seguimiento de la DMAE. Sin embargo, este proceso puede ser un desafío debido a las variaciones en el tamaño, la forma y la distribución de las drusas. En este trabajo, presentamos una metodología robusta basada en técnicas de aprendizaje profundo y procesamiento de imágenes para mejorar la precisión y la eficiencia en la segmentación, identificación y cuantificación de drusas. La metodología propuesta consta de dos fases. En la primera, se realiza una segmentación automática de las drusas utilizando diferentes arquitecturas de aprendizaje profundo, aprovechando su capacidad para manejar las variaciones en las imágenes OCT. En la segunda fase, implementamos un módulo para la identificación y cuantificación automática de las drusas, proporcionando información detallada sobre su número y distribución en la retina. El impacto potencial de este estudio es considerable. La mejora en la precisión de la segmentación de drusas abre la puerta a diagnósticos más tempranos y precisos de la DMAE, lo que puede llevar a tratamientos más efectivos y resultados mejorados para los pacientes. Además, al abordar un desafío clave en la oftalmología con técnicas de inteligencia artificial y procesamiento de imágenes, este trabajo podría sentar las bases para futuras investigaciones en la detección automática de otras características oculares y patologías.
 
[Abstract]: Age-related macular degeneration (AMD) is a leading cause of vision loss in individuals over the age of 50. Early indicators of this disease, drusen, are tiny accumulations of material that form in the retina. Detecting, segmenting, and quantifying these drusen in Optical Coherence Tomography (OCT) images is a critical step in early AMD diagnosis and monitoring. However, this process can be challenging due to variations in the size, shape, and distribution of drusen. In this study, we introduce a robust methodology based on deep learning techniques and image processing to improve precision and efficiency in drusen segmentation, identification, and quantification. The proposed methodology consists of two phases. In the first, automatic segmentation of drusen is performed using different deep learning architectures, leveraging their ability to handle variations in OCT images. In the second phase, we implement a module for automatic drusen identification and quantification, providing detailed information about their number and distribution in the retina. The potential impact of this study is significant. The improvement in drusen segmentation accuracy paves the way for earlier and more accurate AMD diagnoses, which could lead to more effective treatments and improved outcomes for patients. Moreover, by addressing a key challenge in ophthalmology with artificial intelligence and image processing techniques, this work could lay the groundwork for future research into the automatic detection of other ocular features and pathologies.
 
Palabras chave
Inteligencia artificial
Aprendizaje profundo
Segmentación de imágenes
Imagen médica
Tomografía de coherencia óptica
Oftalmología
Degeneración macular relacionada con la edad
Drusas
Artificial intelligence
Deep learning
Image segmentation
Medical imaging
Optical coherence tomography
Ophthalmology
Age-related macular degeneration
Drusen
 
Dereitos
Atribución-CompartirIgual 3.0 España

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións